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Preface

The 5th Mini Workshop on Knot theory was held at Maison Glad Jeju in the beautiful Jeju
island, Korea from July 19 to 23. There were 18 participants from all around Korea including
Seoul, Daegu, Pohang, Jeonju, Gyeongju and Jeju. Most of the participants are in early career
such as students, post-docs, and assistant professors.

The academic program consisted of two lecture series of three talks given by Youngjin Bae
at KIAS and Seungsang Oh at Korea University, and six individual lectures. Among these
twelve lectures, this proceeding contains eleven articles which are either full paper versions or
extended abstracts, and one presentation slide.

The workshop was mainly supported by National Research Foundation of Korea, the mid-
career researcher programs, ‘Legendrian, Fukaya category, and Mirror symmetry’ led by Byung
Hee An and Youngjin Bae, and ‘Research on arc presentations of knots and its applications’
led by Hwa Jeong Lee. The workshop was also partly supported by the Conference Supporting
Program of Kyungpook National University.

Last but not least, we thank all participants and speakers for making the workshop a great
success. We hope this workshop will continue in future.

July 31, 2020
Byung Hee An
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Part 1

Series Lectures






LECTURE 1

Introduction to Legendrian knot theory

CONTACT MANIFOLDS, LEGENDRIAN SUBMANIFOLDS, AND THEIR
CLASSICAL INVARIANTS

YOUNGJIN BAE

ABSTRACT. Legendrian knot theory naturally arise in the study of submanifolds in a 3-dimensional
contact manifold. The theory has its own interest of classification and geography. Moreover,

it plays an essential role in the study of 3-dimensional contact manifold, construction of 4-
dimensional Weinstein manifold and give a new relation to the smooth knot theory. We start
the Legendrian knot theory by investigating the classical Legendrian knot invariants.

In the second part, we study Legendrian singular links up to contact isotopy. Using a
special property of the singular points, we define the singular connected sum of Legendrian
singular links. This concept is a generalization of the connected sum and can be interpreted as
a tangle replacement, which provides a way to classify Legendrian singular links. Moreover, we
investigate several phenomena only occur in the Legendrian setup.

Legendrian knots have been a prominent part of three dimensional contact topology for a
long time. All contact manifolds can be constructed from the standard contact structure on S*
through Legendrian knot surgery operations. Legendrians distinguish contact structures: for ex-
ample the famous tight versus overtwisted dichotomy can be interpreted in terms of Legendrian
knots. A fundamental problem in the theory of Legendrian knots is the classification problem:
completely characterize Legendrian knots up to the natural equivalence relation, Legendrian
isotopy. This is finer than the classification of smooth knots, as follows from the existence of two
“classical” invariants of Legendrian knots, the Thurston—Bennequin number, tb and rotation
number, rot.

Throughout this article, we consider Legendrian knots in the standard contact 3-manifold
(R3,¢ = ker(dz — ydz)). A knot A : S' — R3 is called Legendrian if T,A € &, for all p € A.

By the Legendrian condition it is enough to know two coordinates among three coordinates.
There are two famous and meaningful projections, the front and Lagrangian projection:

7 RP = R?: (2,9, 2) = (2, 2);
L R = R?: (2,1, 2) = (2,9).

We are interested in equivalence classes of Legendrian knots under Legendrian isotopy, which
means smooth isotopy through Legendrian knots. This Legendrian isotopy can be interpreted
as Reidemeister moves I, II, and, IIT in the front projection as depicted in Figure[I] The classical
invariants can be computed in a combinatorial way in terms of the front projection:

() =# [ X0}~ # (X0 >
rot(A) =3 (#{<, >} = #{<, > D).

A Legendrian singular link of degree m with n-component is the image of an immersion of n-
copies of S! into S? whose tangent vectors are contained in the contact structure (S, £,4) which
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FI1GURE 1. Reidemeister moves for LSK

has m transverse double points as its only singularities. Legendrian singular links are discussed
as a theme of Vassiliev type invariants, and appeared to give an algorithm for producing possible
Lagrangian projections of Legendrian knots. To the best of the authors’ knowledge, Legendrian
singular links have not yet been studied in their own right.

The h-principle says that the study of Legendrian singular links up to Legendrian regular
homotopy reduces to a homotopic theoretic question, thus there can be no interesting phenom-
ena from the perspective of contact topology. We instead study Legendrian singular links up to
(ambient) contact isotopy, which preserves transversality and the Legendrian property at each
singular point. See Figure [I]

The degree of a given Legendrian singular link can be reduced via resolutionéﬂ as usual for
singular links. So Legendrian singular links (LSK) can be reduced to singular links (SK) via
the forgetful map || - ||, which takes the underlying singular link type, and to Legendrian links
(LK) via resolutions R with the following commutative diagram of various link theories:

LSK R LK

|I-l LI-II

Sk —2= K

We investigate various invariants for LS including Thurston-Bennequin number, rotation
number, and the resolutions with supporting examples and argue that LS is not a straightfor-
ward combination of LI and SK. The other is to develop a useful tool, called singular connected
sum, and show that it distinguishes a particular pair of Legendrian singular links that can not
be distinguished in £ under any resolution or in SK under || - ||.

The above two goals are deeply related to a special property of the singular points of
Legendrian singular links. Specifically, through contact isotopy, one can keep track of the relative
position of two tangent vectors at each singular point by the co-orientation of the contact
structure &,y on S3. This allows to define an order at each singular point which is equivariant
under contact isotopy.

Moreover this property enables us to define the notion of connected sum at singular points.
We define a singular connected sum (Ly,p1) ® (Lo, p2) by simultaneously performing connected
sums on two pairs of arcs near singular points p; of L;.

THEOREM 0.1. For a given pair of Legendrian singular links Ly, Ly with singular points py,
pa, the singular connected sum (Ly,p1) @ (Lo, p2) is well-defined.

ISometimes called ‘smoothing’ in the literature.



THEOREM 0.2. Let L be a Legendrian singular link and S be a separating sphere for L
inducing a decomposition L = (L1, p1) ® (La, p2). Then this decomposition is well-defined up to
order-preserving contact isotopy of S with respect to L.

There are rigid phenomena in terms of the singular connected sum and the decomposition
which will be discussed in a subsequent paper. It is worth remarking that neither the singular
connected sum nor the decomposition are well-defined in SKC.

On the other hand, a singular connected sum is the same as the replacement of a singular
point p; € L; with a specific singular Legendrian tangle obtained from (Lg,ps), and wice
versa. Indeed, the idea of Legendrian tangles and their replacement is already discussed in the
literatures although their approaches are slightly different from ours. There is a diagrammatic
interpretation of the singular connected sum as well, which allows us to handle the operation
in a convenient way.

As an application of the singular connected sum, we have the following theorem which
implies that LSK is more than the pull-back of LK and SK in the commutative diagram above.

THEOREM 0.3. There exist two Legendrian singular links sharing all classical invariants,
Legendrian link types of all resolutions, and invariants from the orders, which are not contact
1sotopic to one another.

For a given L € LSK of degree k one can obtain a double D(L), a Legendrian link in
#F=1(S% x SY, by a multiple singular connected sum of L with itself. Thanks to the work of
Ekholm-Ng, we can assign a Legendrian contact homology algebra of D(L) to L, as an algebraic
invariant of L.

Furthermore, the resolutions can be regarded as special cases of tangle replacements, and
each resolution has a unique inverse operation, called a splicing, under certain splitting condi-
tions. These splicings provide full descriptions of Legendrian singular links with certain singular
link types.
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NON-CLASSICAL INVARIANT OF LEGENDRIAN KNOTS AND THEIR
COMPUTATIONS I

YOUNGJIN BAE

ABSTRACT. We discuss a non-classical invariant of Legendrian knot, so-called Legendrian dif-
ferential algebra or Chekanov-Eliashberg algebra. The geometric and combinatorial construc-
tion of Legendrian DGA invariant will be introduced. Also we will see that how this invariant
distinguishes the pair of Legendrian knot with the same classical Legendrian invariants.

In the second part, we define a differential graded algebra for Legendrian graphs and tangles
in the standard contact Euclidean three space. This invariant is defined combinatorially by using
ideas from Legendrian contact homology. The construction is distinguished from other versions
of Legendrian contact algebra by the vertices of Legendrian graphs. A set of countably many
generators and a generalized notion of equivalence are introduced for invariance. We show a
van Kampen type theorem for the differential graded algebras under the tangle replacement.
Our construction recovers many known algebraic constructions of Legendrian links via suitable
operations at the vertices.

Even though the history of non-classical invariants of Legendrian knots is only 20 years,
its impact to relative area is huge and fundamental. There are now a number of non-classical
invariants including its categorical generalization. The first of these, and in many regards the
most important, is Legendrian contact homology(LCH), introduced by Chekanov [Che02] and
Eliashberg [Eli98]. Note that LCH is a Legendrian analogue of Lagrangian intersection Floer
homology.

In the past 20 years, LCH has been shown to be a powerful invariant of Legendrian knots, but
it also has revealed a beautiful internal structure and deep connections with smooth topology
and symplectic geometry. Our goal in this paper is to present a fairly thorough overview of
Legendrian contact homology, and the network of ideas radiating from it, in the setting where
the theory is most fully developed: for Legendrian knots in the standard contact structure in
R3.

Legendrian DGA is a tensor algebra generated by Reeb chords. Here the Reeb chord is
an integral curve of Reeb vector field, which is canonically determined by the contact 1-from,
starting and ending at the Legendrian we want to investigate. After giving a grading system by
using the Lagrangian Grassmannian, we define a differential on the graded algebra by count-
ing a J-holomorphic disks satisfying Lagrangian boundary condition, Reeb chords asymptotic
conditions.

Directly comparison between the Legendrian contact homology of two Legendrian knots is
in general very difficult. Chekanov introduced augmentations and used them to linearize Legen-
drian contact homology in R? producing an invariant that is much easier to use to distinguish
between Legendrian knots than the full DGA.

Legendrian graphs are used in the proof of the famous Giroux correspondence theorem
and recently appeared in the study of arboreal singularities as 1-dimensional Legendrians with
singularities. They have been studied by several groups in their own right, especially in the
spirit of classification. The goal of this article is to extend the curve counting idea to Legendrian
graphs in the standard contact R3.



The main issue is how to deal with the singularities, i.e., the vertices of the Legendrian graph.
The crucial feature of the construction of a DGA for Legendrian graphs is that we associate
a set of countably many generators, Reeb chords, for each vertex of the Legendrian graph.
There is geometric motivation for such an assignment. Instead of considering a Legendrian
with singularities, let us consider a bordered manifold 53\ k:lo33, where B3 is an open 3-ball and
k is the number of vertices of our Legendrian graph. Edges in a Legendrian graph are replaced
by properly embedded Legendrian arcs in S® '\ kB3 By admitting a certain standard model
near the boundary we have a Reeb orbit for each boundary component which yields infinitely
many Reeb chords. A DGA with infinitely many generators was discussed by Ekholm-Ng where
the authors considered Legendrian links in the boundary of a subcritical Stein 4-manifold. Note
that these two constructions are deeply related both geometrically and algebraically.

The second issue is about the grading of the DGA. For Legendrian knots, there is a canon-
ical construction of a potential function, which is unique up to translation and induces a Z
or Z/(r)-grading. Similarly, the gradings on n-component links are given by componentwise
potential functions which have (n — 1) degrees of freedom up to translation. We generalize this
construction further to Legendrian graphs by considering edgewise potential functions. Then
each edge contributes one to the degree of freedom for grading and exactly one of them is
reduced by the translation action as in the link case. To have a well-defined grading on our
DGA, we consider Legendrian graphs with potential instead of Legendrian graphs alone.

The last important issue is about invariance with respect to Legendrian isotopy, or Reide-
meister moves for Legendrian graphs. The stable-tame isomorphism, a notion of equivalence
between DGAs, works well when a pair of generators emerges or cancels out. Such a phenom-
enon typically appear when we perform the Legendrian Reidemeister move (II) on Legendrian
links in the standard contact R3®. When there is a m-valent vertex in a Legendrian graph,
however, the Legendrian Reidemeister move (IV,) forces us to develop the notion of algebraic
equivalence which cares about the birth and death of m generators. To remedy this problem, we
suggest the notion of peripheral structures and generalized stabilizations. With this terminology,
we have

THEOREM 0.1. Let L = (A,B) be a Legendrian graph with potential. Then there is a pair
(A, Pr) consisting of a DGA Ag := (An, |- |y, 0) and a canonical peripheral structure P.

THEOREM 0.2. The pair (A, Pr) up to generalized stable-tame isomorphisms is an invari-
ant for L under the Legendrian Reidemeister moves for Legendrian graphs with potential. In
particular the induced homology H,(Ar,0) is an invariant.

The DGA construction can be generalized to Legendrian tangles and we consider the oper-
ation given by replacing a Darboux neighborhood of a vertex with suitable Legendrian tangle,
which yields a van Kampen type theorem for DGAs.

Legendrian links in a bordered manifold and their associated DGAs were first considered
by Sivek via combinatorial methods. The main statement there was also a van Kampen type
theorem for Legendrian links in the standard contact R3. Note that their construction has at
most two borders, and it can be interpreted as a Legendrian graph with one or two vertices in
our terminology. Our construction of a DGA generalizes that of Sivek’s as follows:

THEOREM 0.3. Let L be a Legendrian graph(or tangle) with potential having a m-valent
vertex, T be a Legendrian m-tangle with potential, and L g, T be a tangle replacement with
respect to a gluing ®,. Then we have a following commutative diagram of DGAs:

T, —2= = Ar

Wy
A —— Aciig, 7

10



Here I, is a DGA for the m-valent vertex v with peripheral structures p, and poo, and w, is
defined by evaluating poo for the image py(Z,,).

Moreover, there is a canonical inclusion from Sivek’s DGA diagram to the above DGA
diagram.

On the other hand, Legendrian links can be considered as Legendrian graphs having biva-
lent vertices only which are smooth at each vertex. Conversely, we define an operation, called
smoothing, on a bivalent vertex of a given Legendrian graph, which can be used to define an

associated DGA for the result. Then via this operation, we can recover Chekanov-Eliashberg’s
DGA and Ng’s DGA.

THEOREM 0.4. Let K = (A,B) be a Legendrian circle with (Z/2rot(K))-valued potential
consisting of one bivalent vertex v and one edge. Suppose that two half-edges are opposite and
have the same potential. Then there is a DGA isomorphism

AR (v) @z (Z/22) — AR,

where ASE is the Chekanov-Eliashberg DGA over Z/2Z for the Legendrian knot obtained from
K.

Let £ = (A,B) be a Legendrian graph with Z-valued potential whose underlying graph is a
disjoint union of circles. Suppose that each component has only one bivalent vertex whose two
half-edges are opposite and have the same potential. Then there is a DGA isomorphism

N
A — A,

where A['\':g is the Z-graded Chekanov-Eliashberg DGA over Z[tF,--- [ tE!] for the Legendrian
m-component link L generalized by Ng.

Even though we only consider a combinatorial description for pseudo-holomorphic disks
in the rest of the article, the main idea of the construction of our DGA and of the proof of
the invariance come from the geometric picture sketched above. This model is inspired by the
standard local model for Legendrians in boundaries of Weinstein 1-handles. Indeed, we need
half of that standard model. We have the following relation in this regard:

THEOREM 0.5. Let L be a Legendrian graph with 2m vertices and ® be a m-pair of gluings
of vertices such that the gluing Lo is a Legendrian link in #™(S* x S?). Then the DGA Ay is
generalized stable-tame isomorphic to the DGA .AE': defined by Ekholm and Ng.

For a given Legendrian link in S3, there is a construction of a Weinstein domain obtained
by attaching a cotangent cone (or Weinstein two handle) along the neighborhood of the given
Legendrian link. To extend this construction to a Legendrian graph A, we need additional data
on A, a smoothing S at each vertex and base points.

Note that these additional data determine a neighborhood of A, a Legendrian ribbon R,
with preferred Legendrian cycles {A;};er. Now it is possible to mimic the construction for the
Legendrian graph, and note that the resulting Weinstein domain, say ¥V, depends on the ribbon
R, not the starting Legendrian A. So it is natural and important to consider algebraic invariants
for the ribbon structure which can be extracted from A equipped with the above additional
data.

THEOREM 0.6. Let (£, S) be a based Legendrian graph with potential and smoothing. For
each pair of cycles (A;, Aj), there exists a chain complex Agg(A;, A;), which is a ribbon equiv-
alence invariant up to (zig-zags of ) quasi-isomorphisms.

In particular, the homology group H, (Arcg(Ni, Aj)) is an invariant up to isomorphism under
ribbon equivalence.

11



There are two distinguished Lagrangians in W. One is the Lagrangian skeleton of VW and
the other is its symplectic dual, the union of the corresponding cocore disks Dy = {D;}c;.
We propose a relation between the partially wrapped Floer cohomology of the dual of the
Lagrangian skeleton and the newly constructed chain complexes in the following theorem.

THEOREM 0.7. There is an Ay quasi-isomorphism between the partially wrapped Ao al-
gebra CW*(Dy, Da) and Agg(AA) = @, ; Acs(Ais Aj) which extends the quasi-isomorphisms
between the chain complexes CW*(D;, D;) and Azg(A;, A;).

The above conjecture implies that Agg(A;, Aj) in the above can be interpreted as a com-
binatorial computation on the A-side of mirror symmetry proposed by Kontsevich. It seems
interesting to make a comparison between our method and other approaches including the
theory of microlocal sheaves, the infinitesimal Fukaya category, and the study of holonomic
D-modules. At the end of this article we give explicit computations of the algebra Ag(A;, A;)
for an arboreal singularity in Nadler’s list.

12
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NON-CLASSICAL INVARIANT OF LEGENDRIAN KNOTS AND THEIR
COMPUTATIONS III

YOUNGJIN BAE

ABSTRACT. Another source of non-classical Legendrian invariant is the idea of generating fam-
ilies for Legendrian knots. This idea induces a combinatorial description of ruling invariants
which is easily computable. Moreover, this ruling type invariant and is intimately related to
the DGA invariant for Legendrian knots.

In the second part, we define ruling invariants for even-valence Legendrian graphs in stan-
dard contact three-space. We prove that rulings exist if and only if the DGA of the graph in the
previous one has an augmentation. We set up the usual ruling polynomials for various notions
of gradedness and prove that if the graph is four-valent, then the ungraded ruling polynomial
appears in Kauffman—Vogel’s graph version of the Kauffman polynomial. Our ruling invariants
are compatible with certain vertex-identifying operations as well as vertical cuts and gluings of
front diagrams. We also show that Leverson’s definition of a ruling of a Legendrian link in a
connected sum of S' x S§2’s can be seen as a special case of ours.

Ruling invariants for Legendrian knots and links were introduced by Chekanov and Pushkar,
and independently by Fuchs. The motivation comes from a generating family, which is a family
of functions whose critical values give the front of a Legendrian knot. Rulings can be used to
distinguish smoothly isotopic Legendrians even if share the same Thurston-Bennequin number
and rotation number, such as Chekanov’s famous pair of Legendrians of knot type 5. For that
reason we call ruling invariants non-classical.

There is another non-classical construction, the so called Chekanov-Eliashberg DG-algebra,
originating from a relative version of contact homology, i.e., holomorphic curve techniques. The
homology of the DG-algebra is invariant under Legendrian isotopy and also distinguishes the
above pair of Legendrians via a method called linearization of DG-algebras.

There is a deep relation between the two approaches: the existence of a ruling and the
linearizability of the DG-algebra, i.e, the existence of a so called augmentation, are equivalent.
This is established by Fuchs, Fuchs-Ishkhanov, and Sabloff and extended by Leverson.

On the other hand, the so called ungraded ruling polynomial, which is a weighted (by genus)
count of all rulings, appears as a certain sequence of coefficients of the Kauffman polynomial.
These are leading coefficients when the upper bound for the Thurston-Bennequin number given
by the Kauffman polynomial is sharp, and otherwise all zeros. (Hence the ungraded ruling
polynomial is in fact a classical invariant; to access the full power of rulings, one has to narrow
their counts to only Z-graded ones.)

Legendrian graphs have been studied using classical invariants. Recently they have also
drawn attention as singular Legendrians appearing in the study of Lagrangian skeleta of Wein-
stein manifolds. The first two authors developed a DG-algebra invariant for Legendrian graphs
via a careful consideration of the algebraic issues that arise near the vertices of graphs.

In this article, we extend the definition of ruling from Legendrian links to Legendrian graphs.
Of course, the main issue will be to analyze the behavior of each ruling near the vertices. We
restrict ourselves to Legendrian graphs with only even-valent vertices and demand that the
ruling at each vertex be parametrized by the set of perfect matchings of the incident edges. In

15



other words, we regard a Legendrian graph as a set of Legendrian links (with markings) which
can be obtained by resolutions of vertices, indexed by a perfect matching at each vertex.

With this extension, we show the equivalence between the existence of (p-graded) rulings
and of (p-graded) augmentations for Legendrian graphs.

THEOREM 0.1. Let L be a bordered Legendrian graph. Then a p-graded normal ruling for L
exists if and only if a p-graded augmentation for the DG-algebra A(L) exists.

Kauffman and Vogel introduced a polynomial invariant for four-valent graphs embedded
in R® which generalizes the two-variable Kauffman polynomial of links. We also show that
the ungraded ruling polynomial can be realized as a certain sequence of coefficients of this
topological graph invariant.

THEOREM 0.2. Let L be a regular front projection of a four-valent Legendrian graph. The
ungraded (p = 1) ruling polynomial Ry(L) for L is the same as the coefficient of a **H)~1 (g1,
resp.) in the shifted Kauffman—Vogel polynomial 2~ F (unnormalized polynomial (L], resp.)
after replacing A and B with (z — 1) and —1, respectively.

16
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THE STRUCTURE OF AUTOMORPHISM GROUPS OF CLTTF ARTIN
GROUPS

YOUNGJIN CHO

ABSTRACT. We obtain a presentation of the automorphism group of a CLTTF Artin group.
In fact, it is generated by inversions, partial conjugations, graph automorphisms, and partial
reflections. The complication due to the non-uniqueness of defining graphs is managed by
surprisingly simple automorphisms called partial reflections. Relations are basically given by
conjugation actions of one type of automorphisms to the other.

*This work is a part of the dissertation theses of the author.

1. Introduction

Let I be a simple graph such that every edge e carries an integer label m, > 2. An Artin
group Ar with a defining graph I' is generated by vertices of I' and related by

StS"’:tSt"‘
L =~
Me Me

for each edge e joining s and t. A set of generators is called that of Artin generators if a defining
graph can be recovered by using them as vertices. For example, the 4-strand braid group is an
Artin group defined by the triangle with edge labels 2, 3, 3. If all edge labels are 2, Ar is
called a right-angled Artin group. An Artin group is rigid if it has a unique defining graph,
or equivalently, if a set of Artin generators is sent to any other set of Artin generators by an
automorphism of the Artin group. Right-angled Artin groups [5] and Artin groups of finite type
[1] are known to be rigid. In general, Artin groups need not be rigid.

From now on, a graph I is edge-labeled and V(I') and E(I") denote the set of vertices and
the set of edges, respectively. Suppose that for a graph I'; V(I') has disjoint subsets U and V'
such that V' generates Artin subgroup Ay of finite type and each vertex in V(I') — (U U V)
that is adjacent to a vertex in U is adjacent to every vertex in V' by an edge labeled 2. In [2],
authors propose a typical way of obtaining a new defining graph from I' under this circumstance.
Recall that there is a unique element A in Ay, which is the longest element in the associated
Coxeter group, such that the conjugation by A permutes elements of V. A new set S’ of Artin
generators is obtained from V' (I") by replacing elements of U by their conjugates by A and then
S’ determines a new defining graph A that is called a twist of I' on U along V. In fact A is
obtained from I' by replacing each edges joining a vertex u in U and a vertex v in V' by a new
edge joining u and AvA~'. We may identify V(A) with V(T') since only edges are altered. There
is an obvious isomorphism : Ar — Aa called a twist isomorphism, that sends each v € V' to
AvA~! and fixes other generators. It is a conjecture that two defining graphs of an Artin group
are twist-equivalent, that is, related via a series of twists.

There have been extensive researches on automorphism groups of free abelian groups, free
groups, and more generally, right-angled Artin groups. There are also many complete results on
automorphism groups of some Artin groups of finite type. Nielsen automorphisms or Whitehead
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automorphisms on free groups can be adapted to form a set of generators of automorphism
groups when they are appropriate. They are usually classified as one of the following types:
permutations of generators, inversions, transvections, and partial conjugations. For right-angled
Artin groups, peak reduction arguments can be employed to obtain a complete set of relations
among generators [3}, [4].

In this article we find a presentation of the automorphism group Aut(Ar) of a CLTTF
Artin group Ar. A difficulty lies on handling twist isomorphisms that obviously influence the
automorphism group. Another difficulty is the fact that a (label-preserving) graph isomorphism
: I'y = I'y does not induce an automorphism on Ar in general even though I'y and I'y are twist-
equivalent to I'. This is because an automorphism is defined on a fixed presentation of Ar.
We overcome these by introducing a group Iso(I') consisting of equivalence classes of graph
isomorphisms among graphs twist-equivalent to I' and its subgroup of partial reflections.

2. A short exact sequence for Aut(Ar)

Let I be a CLTTF graph. Then two kinds of inversions are automorphisms of Ar. The global
inversion sending s to s~! for all vertices s is always an automorphism. If ¢ is a vertex of valence
1 and the incident edge with ends s,¢ has an even label, there is an automorphism, called a
leaf inversion, that sends ¢ to (sts)™! and fixes others. Let Inv(Ar) denote the subgroup of Ar
generated by the global inversion and leaf inversions. Then Inv(Ar) & (Z/2Z)*1 where k is
the number of vertices of valence 1.

A partial conjugation can be an automorphism of Ar or a twist isomorphism when I' splits
along T, that is, ' = ["UT" and T = I" NI for full subgraphs I'" and I of I" where T is an
edge or a vertex. Let g be an element of the centralizer of the subgroup A7 in Ar. A partial
conjugation on I” is an automorphism sending v to gvg™! for v € V(I") and fixing others. In
the degenerate case that I'” is a vertex s, a partial conjugation becomes an inner automorphism
that is a conjugation by s. Let PC(Ar) denotes the subgroup of Aut(Ar) generated by partial
conjugations.

In addition, if 7" is an edge {s,t} of an odd label m or its end vertex s in the above splitting,
let A be the m-fold product st---s. Then the conjugation by A switch s and ¢. Let A be the
twist of I" on V/(I'") — {5, t} along {s,¢}. Then the partial conjugation that conjugates generators
in V(I") — {s,t} by A and fixes other generators gives a twist isomorphism : Ar — Ax. Two
graphs are twist-equivalent if they are related by a finite sequence of twits. John Crisp showed
that all defining graphs of Ar are twist-equivalent if I' is CLTTF [2], which we do not use
in this article. We always assume that every graph twist-equivalent to I'" has the same set of
vertex labels determined by I'. These two kind of partial conjugations generates a set PT(I") of
morphisms in the category of Artin groups defined by graphs twist-equivalent to I'. In another
words, PT(I") is generated by PC(Ar) and twist isomorphisms under composition.

Given a defining graph I', consider the set of all (edge-label preserving) graph isomorphisms
: 'y — I'y for graphs I'y and 'y twist-equivalent to I'. Two graph isomorphisms are equivalent
if they agree as functions on the sets of vertices, that is, o ~ § if a(v) = f(v) for all v € V(I").
Let Iso(I') be the set of equivalent classes. We can think of a class in Iso(I') as a bijection on
V(T') that can be realized by a graph isomorphism among graphs twist-equivalent to I' and its
representative is a realization. Thus Iso(I") forms a group under composition. Given a class in
Iso(I") and a graph A; twist-equivalent to I', there is a unique graph isomorphisms : A; — Ay
that represents the class since A; and the bijection on vertices forces edges of Ay to turn the
bijection into a graph isomorphism.

An isomorphism ¢ : Ar — An is inversion-free if the exponent sum of the word p(v) is 1 for
all v € V(I'). An inversion-free isomorphism sends each vertex of I" to a conjugate of a vertex of
A. For an isomorphism ¢, there is a unique ¢ € Inv(Ar) such that pou is inversion-free. A chunk
in I' is a maximal full subgraph of I' that does not split any more along an edge or a vertex. Since
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vertices in a chunk are conjugated by the same product of words under partial conjugations in
PT(T), it is natural to expect that an inversion-free automorphism of Ar conjugates vertices
in a chunk by a fixed group element. This prediction is verified by Chunk Invariance Lemma
introduced and proved by John Crisp in [2].

LEMMA 2.1 (Chunk Invariance Lemma [2]). For an inversion-free isomorphism ¢ : Apr —
Ap and each chunk C of T, there is an element a € Aa such that the restriction of a” o ¢ to
the subgroup Ac is induced from a (label-preserving) graph isomorphism : C' — D where a¥ is
the conjugation by a and D is a chunk in A.

Fix a base chunk B in I'. We construct an epimorphism 7p : Aut(Ar) — Iso(I') using
Chuck Invariance Lemma. This construction is essentially due to John Crisp who worked on
a groupoid setting. In fact we will show that for an automorphism ¢ € Aut(Ar), there are
~v € PT(I") and ¢ € Inv(Ar) such that yoroy gives a graph isomorphism that represents a class
in Iso(I"). Given an inversion-free automorphism ¢ € Aut(Ar), there is an innerautomorphism
~o € PC(I") such that 790 ¢ gives a graph isomorphism on B by Chunk Invariant Lemma. That
is, 7o o ¢ sends each vertex of B to a vertex of a chunk B’ in I' and gives a graph isomorphism
:B— B

For an inductive step, we are given an inversion-free isomorphism ¢ : Ap — Aa for a graph
A twist-equivalent to I' such that ¢ is a graph isomorphism on some connected subgraph I”
of I" that is a union of chunks including B. Let C' be a chunk of I" that is not in I'” but which
intersects IV. We are done if there is v € PT(I") such that 7 o ¢ is an isomorphism : Apr — Ax,
that is a graph isomorphism on I UC'". Chunk Invariance Lemma gives a € Ax such that a™ o
gives a graph isomorphism on C. If "N (C is an edge {s,t} of label m. Then ¢ and a* o must
have the same image {s1,?;} of the intersection {s,t} as an unoriented edge. Let v € PT(I") be
the partial conjugation by a on vertices in the connected component of A — {s;,;} containing
the image of C' under a? o ¢. Then v o ¢ gives a graph isomorphism on IV U C. If I N C is
a vertex s. Let s; and s, be the image of s under ¢ and a¥ o ¢, respectively. It is possible
that s; # so but there must be an edge path of odd labelled edges from s; to sy in A since T’
and A are twist-equivalent. Let v € PT(I") be the partial conjugation by a on vertices in the
connected component of A — {s,} containing the image of C' under a* o . Then v o ¢ gives a
graph isomorphism on I U C.

THEOREM 2.2. We have a short exact sequence:
1 — ker(mg) — Aut(Ap) =2 Iso(I') — 1.

We remark that the epimorphisms 7 and 7w differ by an innerautomorphism of Ar for
distinct base chunks B and B’.

THEOREM 2.3. ker(mp) = Inv(Ar) x PC(Ar).

3. The group Iso(I') of graph isomorphisms

We define a special family of graph isomorphisms called partial reflections that are sources
for graph isomorphisms that are not graph automorphisms. Consider a subgraph I'" bounded
by separating slides {e;} and separating vertices of slides {¢;} in I so that slides {/,} lie outside
of I'. Let Ej; or L; be subgraphs outside of I bounded by slide e; or ¢;, respectively. A partial
reflection on I" is a graph isomorphism 7 : I' — A that fixes subgraphs E; and is a graph
automorphism on L; that switches two end vertices of ¢; so that the set of bad or neutral
slides for 7 is exactly {e;, ¢;}. In fact, for each e; = {s,t} and an edge {s,v} with v # ¢ in I",
{7(s),7(v)} is not an edge of T but {7(¢), 7(v)} is. The similar thing holds when the roles of s
and t are exchanged. For each ¢; = {s1, 2, , s} with the separating vertex s; and an even
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positive integer k and an edge {s1,v} with v # sy in IV, {7(s1),7(v)} is not an edge of I" but
{T(sk), 7(v)} is.

For any partial reflection 7, 72 is obviously a graph automorphism. If I'" is bounded only by
separating edges, then it may contains rotors. For example, Figure[1| depicts a partial reflection
on a subgraph containing a rotor of order 4. This partial reflection switches v; <+ vy and
v3 <> vg and rotates vs — vg — v7 — vy — vs. If IV contains rotors of orders 2r; in general,
partial reflections on I form a subgroup of Iso(I') that is isomorphic to the cyclic group of
order m where m is the least common multiple of 2r;. This subgroup intersects Aut(I') at a
subgroup isomorphic to the cyclic group of order m /2. Partial reflections on distinct subgraphs
obviously commute. Let PR(I") denote the subgroup of Iso(I") generated by partial reflections.
Then PR(T") N Aut(I") is generated by graph automorphisms that rotate rotors.

U1 U3 U1 U3

Vs Vg Vs Vg

Ug Uy Ug Ut

U2 V4 U2 V4

FIGURE 1. Rotor of order 4

THEOREM 3.1. We have a short exact sequence:
Aut(T)
PR(T) N Aut(T")
If every partial reflection has no rotors, that is, every partial reflection has order 2, then
PR(I") N Aut(I") = {1} and we have a splitting short exact sequence:

1 — PR(I") — Iso(I') — Aut(I') — 1.

A graph automorphism in Aut(I") gives an automorphism in Aut(Ar) that permutes gener-
ators. The subgroup PR(I") of Iso(T") is lifted into Aut(Ar) via the lifting function o : Iso(I") —
Aut(Ar) discussed in Thereom [2.2] Recall the partial reflection 7 given in its definition earlier in
this section. Since 7 is a graph isomorphism : I' — A it induces an isomorphism ¢, : Ap — Aa
that permutes vertices on the interior of IV by 7. If the subgraph I contains no other slides
inside, we call 7 a small partial reflection. Small partial reflections obviously generates PR(T").
Assume that 7 is a small partial reflection. Our choice o(7) of lifts of 7 is an automorphism
of Ar that is a composition of ¢, and partial conjugations on vertices of E; or L; by their
quasi-centers if E; or L; do not contain the base chunk B, and partial conjugations on vertices
of ' = E; or I' = L; if E; or L; contain B. Since each ¢; stays in L;, partial conjugations on E;
or L; commute each other and a partial conjugation on I' — F; or I' — L; is a composition of a
conjugation on £; or L; and a cancelling innerautomorphism. We note that only one among E;
and L; may contain B if any. Up to innerautomorphisms, o(7) is well-defined regardless of the
composing order of partial conjugations. We will make a canonical choice for the composing
order so that the partial conjugation on E; or L; that contain the base chunk performed last
together with the cancelling innerautomorphism.

Given «, § that are partial reflections or graph automorphisms, let d(«, 5) € PC(I") be such
that §(«, B)o(af) = o(a)o(5). We obtain relations among lifts via §(«, 5). If o or § is a graph
automorphism, then 6(«, ) = 1. For a partial reflection 7, §(7,7) is the composition of the
same partial conjugations as in o(7) but by their centers instead of their quasi-centers. Let
71 and 79 be small partial reflections on subgraphs I'y and I's, respectively. If no slide for =
invades I'y and vice versa, there is a lift o(m7) such that §(m, ) = 1.

— 1.

1 - PR(T") — Iso(T") —
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4. Conclusion and an example

The automorphism group Aut(Ar) of a CLTTF Artin group Ar is generated by inversions,
partial conjugations, graph automorphisms, and small partial reflections. Graph automorphisms
and small partial reflections generate a finite group Iso(I'). In particular, if all small partial
reflections are of order 2, we have

Iso(I") = PR(T") »x Aut(I)

where arar™! is the partial reflection on «a(I"”) for a partial reflection 7 on a subgraph I'" and a
graph automorphism «.

We had ker(mp) = Inv(Ar) x (Inn(Ar) x PCg(Ar)) for the epimorphism 7p : Aut(Ar) —
Iso(I"). Partial reflections or graph automorphisms act on ker(mp) via conjugations by their
lifts. In this section, we abuse notations so that « denotes our choice o(«) of its lifts. Let «
be a graph automorphism. For an inversion ¢ at a terminal vertex v, aua™! is the inversion at
a(v). The global inversion is in the center of Aut(Ar). For a partial conjugation f, afa™ = f’
where C(f") = a(C(f)), Ay = a(A\f). In particular, ca®a™! = (a(a))* for a € Ar.

Our lift of a small partial reflection 7 is given by a* g, - - - g1,au for an innerautormorphism
a”, partial conjugation isomorphisms g; and an isomorphism .. For an inversion ¢ at a terminal
vertex v, Tt7! is the inversion at ¢, (v). For a partial conjugation f € PC(Ar), one can derive
that

1

Tfrt = (% g0 grpn) faPgu - gion) T =0 flg gl
where f', ¢, ..., g, are partial conjugations in PCg(Ar) such that C(f') = ¢, (C(f)), C(g;) =
C(gi). We omit the formulas for b, Ay, and Ay since they become rather complicated if f is,
for example, a partial conjugation via a complicated central loop.

Finally we consider an example given in the left of Figure [2| Thick edges are labelled 3 and
all others are labelled 4. Let the middle square be the base chunk. The global inversion and
a leaf inversion at vio generates Inv(Ar) = (Z/27)2. Partial conjugation along two separating
odd-labelled edges generate Z2. The separating vertex vs has 11 independent central loops and
so its centralizer is isomorphic to Z x Fy;. Thus PCp(Ar) & Z x (Fy; x Z?). We have relations
in PC(AF)

There is one graph automorphism switching vy and v;g9. There are partial reflections on the
left square and on the right square. There are two independent partial reflections on the top
square. Thus Iso(T") is generated by five graph isomorphisms. In fact, Iso(T') = ((Z/27Z)*
(Z)27.)*) x Z./27Z. Conjugate actions of Iso(I') on other generators explained above complete a

set of relations.
V12e—al11 V12e—all11
ng > 10 UQ’”N

V1| VU3 Vs (ord (SN ECE) Vs (%rd
—_—

Vo Vs Vg Ug Vo U4 Vg U8

FiGURE 2. Partial reflection on the top chunk
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BIPARTITE INTRINSICALLY KNOTTED GRAPHS WITH 23 EDGES

HYUNGJUN KIM*, THOMAS MATTMAN AND SEUNGSANG OH

ABSTRACT. Every bipartite intrinsically knotted graph with 23 edges and §(G) > 3 contains
C14 or Cousin 110 of Eg + e family.

1. Introduction

Throughout the paper, an embedded graph will mean one embedded in R3. A graph is
intrinsically knotted if every embedding of the graph in R3? contains a non-trivially knotted
cycle. Conway and Gordon [2] showed that the complete graph K5 is intrinsically knotted.
Foisy [4] showed that K33 is also intrinsically knotted. A graph H is called a minor of the
graph G if H can be obtained from G by deleting or contracting edges. A graph G is said to be
manor minimal intrinsically knotted if G is intrinsically knotted and its every proper minor is
not intrinsically knotted. Robertson and Seymour [14] proved that for any property of graphs,
there is a finite set of graphs minor minimal with respect to that property. In particular, there
are only finitely many minor minimal intrinsically knotted graphs, but finding the complete set
is still an open problem.

A VY move is an exchange operation on a graph that removes all edges of a 3-cycle abc
and then add a new vertex v and connect it to each vertex of the 3-cycle, as shown in Figure 3
We say two graphs G and G’ are cousins if G’ is obtained from G by a finite sequence of VY
and YV moves. The set of all cousins of G is called the G family.

Since VY or YV moves do not change the number of edges of the graph, all graphs in the
family have same number of edges. Note that VY move preserves intrinsic knottedness [13],
and YV move does not preserve intrinsic knottedness [3]. It is known [2], 4, 10] that K; and
the 13 graphs obtained from K7 by VY moves, and K331, and the 25 graphs obtained from
Ks311 by VY moves are minor minimal intrinsically knotted.

a b a b

C C

FIGURE 3. VY and YV moves

Johnson, Kidwell and Michael [7], and, independently, Mattman [12], showed that intrin-
sically knotted graphs have at least 21 edges. Lee, Kim, Lee and Oh [11], and, independently,
Barsotti and Mattman [I] showed that K7 and the 13 graphs obtained from K; by VY moves
are the only minor minimal intrinsically knotted graphs with 21 edges. The K331 family con-
sists of 58 graphs, and Goldberg, Mattman and Naimi [5] showed that all of them are minor
minimal intrinsically knotted They also studied the Eg+ e family which consists of 110 graphs,
and showed that all graphs of them are intrinsically knotted, and exactly 33 graphs among
them are minor minimal intrinsically knotted.
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A bipartite graph is a graph whose vertices can be divided into two disjoint sets A and B
such that every edge connects a vertex in A to one in B. We say that a graph G is minor
manimal bipartite intrinsically knotted, if G is an intrinsically knotted bipartite graph, but no
proper minor of G is intrinsically knotted and bipartite. Since contracting edges can lead to
a bipartite minor for a graph that was not bipartite to begin with, it is easy to construct
examples of graphs that are not themselves bipartite intrinsically knotted even though they
have a minor that is minor minimal bipartite intrinsically knotted. Nonetheless, Robertson
and Seymour’s [14] Graph Minor Theorem guarantees that there are a finite number of minor
minimal bipartite intrinsically knotted graphs and every bipartite intrinsically knotted graph
must have one as a minor. It is known that there are exactly two minor minimal bipartite
intrinsically knotted graphs, which are the Heawood graph(Ch4) and the Cousin 110 of the
Ey + e family [8].

Our goal in this paper is to show there does not exist any minor minimal intrinsically
knotted graph with 23 edges which is bipartite. We first classify bipartite intrinsically knotted
graphs which consists 23 edges and vertices with degree 3 or more.

THEOREM 1.1. There are ezxactly five graphs with 23 edges and every verter has degree 3
or more that are bipartite intrinsically knotted: 2 graphs are obtained from Cousin 110 of the
Ey + e family by adding an edge, and 4 graphs are obtained from Ci4 by adding 2 edges.

Since minor minimal intrinsically knotted graphs do not have vertices with degree 1 or 2,
we also have the following corollary.

COROLLARY 1.2. There is no minor minimal intrinsically knotted graphs with 23 edges that
are bipartite.

2. Terminology and strategy

The notation and terminology used in this paper follow those employed in the previous
paper [8]. Let G = (A, B, E) denote a bipartite graph with 23 edges whose partition has the
parts A and B with E denoting the edges of the graph. For distinct vertices a and b, let
G\ {a, b} denote the graph obtained from G by deleting two vertices a and b. Deleting a vertex
means removing the vertex, interiors of all edges adjacent to the vertex and remaining isolated
vertices. Let Ga » denote the graph obtained from G'\ {a, b} by deleting all degree 1 vertices, and

G,Lb = (V(Lb, Ea ») denote the graph obtained from G, by contracting edges adjacent to degree
2 vertices, one by one repeatedly, until no degree 2 vertex remains. The degree of a, denoted
by deg(a), is the number of edges adjacent to a. We say that a is adjacent to b, denoted by
a ~ b, if there is an edge connecting them. If they are not adjacent, we denote a ~ b. If
a is adjacent to more than a vertex, say b,...,0, then we write a ~ {b,...,b'}. Note that
Y acadeg(a) = >, pdeg(b) = 23 by the definition of bipartition. We need some notations to

count the number of edges of Ggp.

e F(a) is the set of edges that are adjacent to a vertex a.

o V(a)={ce AU B | dist(a,c) = 1}

e V,(a) ={ce AU B | dist(a,c) =1, deg(c) =n}

o V,(a,b) =V,(a) NV,(b)

o Vy(a,b) ={ce AUB | 3de Via,b) such that c € V5(d) \ {a,b}}

Obviously in G'\ {a, b} for some distinct vertices a and b, each vertex of V3(a,b) has degree

1. Also each vertex of V3(a), V3(b) (but not of V3(a,b)) and Vy(a,b) has degree 2. Therefore to
derive éa,b all edges adjacent to a,b and V3(a,b) are deleted from G, followed by contracting
one of the remaining two edges adjacent to each vertex of Vi(a), V5(b), Vi(a,b) and Vy(a,b)
as in Figure (a). Thus we have the following equation counting the number of edges of @a,b

42



which is called the count equation;

|Bag| < 23— |E(a) UE®)| — ([Va(a)| + Va(b)| — [Va(a,b)| + [Va(a, b)| + Vi (a, b)])-

(a) (b)

FIGURE 4. Deriving G,

For short, write NE(a,b) = |E(a) U E(b)| and NV3(a,b) = |Vs(a)| + [V3(b)| — |V5(a, b)|. If
a and b are adjacent (i.e. dist(a,b) = 1), then V5(a,b), Vi(a,b) and Vy-(a,b) are all empty sets
because G is triangle-free. Note that the derivation of @a,b must be handled slightly differently
when there is a vertex ¢ in V' such that more than one vertex of V(c) is contained in V3(a,b)
as in Figure 4] (b). In this case we usually delete or contract more edges even though ¢ is not
in Vy(a, b)

The following proposition, which was mentioned in [11], gives three important conditions
that ensure a graph fails to be intrinsically knotted.

ProrosiTiON 2.1. [If @mb s planar, then G is not intrinsically knotted. Especially, if @&b
satisfies one of the following two conditions, then G, is planar, so G is not intrinsically knotted.

(1) |Eap <8, or
(2) |Eup| =9 and Gy is not isomorphic to Kj 3.
(3) |Eupl = 10 and G,y is not isomorphic to Ks, or does not have K33 as minor.

3. Restoring method and G contains a vertex with degree 5 or more

In this section we introduce the restoring method, which is introduced in [9] and will be
used frequently in this paper.

The purpose of this work is to find all candidates of bipartite intrinsically knotted graphs
with 23 edges. To prove the main theorem, we distinguish into several cases according to
combination of degrees of all vertices and further sub-cases according to connections of some
edges among 23 edges in each combination. Let G be a bipartite graph with 23 edges with some
distinct vertices @ and b, in which we assume that information about degree of every vertex
and some edges including all edges incident to a and b is known as shown in Figure (a) for
example. R

First, we examine the number of the edges of the graph G, ;. If it has at most eight edges,
then it is planar and so G can not be intrinsically knotted by Proposi’\cion 2.1l For otherwise,
G can rarely be intrinsically knotted. Especially if it has nine edges, G,; must be isomorphic
to K33 in order to G being intrinsically knotted. In this case, G, being a subdivision of K33
has exactly six vertices with degree 3 and extra vertices with degree 2. The restoring method
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is a way to find candidates of such GG, as shown in Figure (b) and (c). Finally we recover G
from G, by restoring the deleted vertices and edges.

~

Ga,b — Ga,b — G
|
K3

By using the count equation and the restoring method, we can find every bipartite intrin-
sically knotted graph with 23 edges which has a degree 5 or more vertex. We give an example
of this case that A consists of one degree 6 vertex, two degree 4 vertices and three degree 3
vertices, and B consists of five degree 4 vertices and one degree 3 vertex with edge information
as drawn in Figure [f[(a). In the figure, the vertices are labeled by ax, ..., ag, b1, ..., bs and the
numbers near vertices indicate their degrees.

In this case, G, 4, has six degree 3 vertices as, a4, as, ag, bs, b5 and three degree 2 ver-
tices by, bo, bs. Now we examine the number of the edges |Ea1,a2\ of the graph @al,az. Since
NE(ay,as) =10, |Vi(ai,az)| = 3 and NVs(ay, az) = 1, the count equation gives ]Eahazl =0.

We now assume that @am is isomorphic to K3 3. As the bipartition of K33, we assign the
bipartition A’ (white vertices) and B’ (black vertices) for six degree 3 vertices of G, 4,. Since
all four vertices as, a4, as, ag have degree 3, by is not adjacent to bs (by » bs) in éamz. This
implies that b, and b5 should be in the same partition, say B’. The remaining vertex of B’ is
as or a4 without loss of generality. Compare two figures in Figure [f|(b) and (c).

In the former case, A’ has three vertices ay, as, ag. The three edges of GGLGQ connecting as
and A’ inevitably passes through three degree 2 vertices by, b, b3. The three edges of @mm
incident to by (or bs) are directly connected to A’. This G, 4, is drawn by the solid edges in the
figure. By restoring the deleted vertices and dotted edges, we recover G. In the latter case, A’
has three vertices as, as, ag. Then the three edges of @am connecting a4 and A’ passes through
three degree 2 vertices by, by, b3. The remaining arguments are similar to the former case.

FI1GURE 5. Restoring method

4. Twin restoring method and G consists of degree 3 or 4 vertices

In this section we introduce the twin restoring method. Sometimes the restoring method
applied to G, for only one pair of vertices {a,b} does not give sufficient information to con-
struct the graph G. In this case, we apply the restoring method to two graphs G, and Gy
simultaneously for different pairs of vertices. This method is called the twin restoring method.

By using the count equation and the twin restoring method, we can find every bipartite
intrinsically knotted graph with 23 edges which consists of degree 3 or 4 vertices. We give
an example of this case that both A and B consist of two degree 4 vertices and five degree 3
vertices with vertex labelling and partial edge information as drawn in Figure @(a). In this case,
we apply the restoring method to two graphs Gy, », and Gy p, simultaneously. These two graphs
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have the bipartitions assigned as in Figure [f[(b) and (c). Since there is exactly one degree 2
vertex in Gy, 5,, ¢y and ¢ are connected by passing through c¢,. Similarly ¢; ~ . We use the
same argument for the remaining edges of ¢; and ¢f. By recovering the removed vertices and
its related edges, we obtain GG which contains C4 as subgraph.

FIGURE 6. Twin restoring method

45






[1]
2]
3]

[14]

Bibliography

J. Barsotti and T. Mattman, Graphs on 21 edges that are not 2—apez, Involve 9 (2016) 591-621.

J. Conway and C. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1985) 445-453.

E. Flapan and R. Naimi, The Y'V moves does not preserve intrinsic knottedness, Osaka J. Math. 45 (2008)
107-111.

J. Foisy, Intrinsically knotted graphs, J. Graph Theory 39 (2002) 178-187.

N. Goldberg, T. Mattman, and R. Naimi, Many, many more intrinsically knotted graphs, Algebr. Geom.
Top. 14 (2014) 1801-1823.

R. Hanaki, R. Nikkuni, K. Taniyama, and A. Yamazaki, On intrinsically knotted or completely 3-linked
graphs, Pacific J. Math. 252 (2011) 407-425.

B. Johnson, M. Kidwell, and T. Michael, Intrinsically knotted graphs have at least 21 edges, J. Knot
Theory Ramifications 19 (2010) 1423-1429.

H. Kim, T. Mattman, and S. Oh, Bipartite intrinsically knotted graphs with 22 edges, J. Graph Theory
85 (2017) 568-584

H. Kim, T. Mattman, and S. Oh, More intrinsically knotted graph with 22 edges and the restoring method,
J. Knot Theory Ramifications 27 (2018) 1850059.

T. Kohara and S. Suzuki, Some remarks on knots and links in spaital graphs, Knots 90 (Osaka, 1990)
(1992) 435-445.

M. Lee, H. Kim, H. J. Lee, and S. Oh, Ezactly fourteen intrinsically knotted graphs have 21 edges, Algebr.
Geom. Topol. 15 (2015) 3305-3322.

T. Mattman, Graphs of 20 edges are 2-apex, hence unknotted, Algebr. Geom. Top. 11 (2011) 691-718.
R. Motwani, A. Raghunathan, and H. Saran, Constructive results from graph minors; linkless embeddings,
Proc. 29th Annual Symposium on Foundations of Computer Science, IEEE (1988) 398—-409.

N. Robertson and P. Seymour, Graph minors XX, Wagner’s conjecture, J. Combin. Theory Ser. B 92
(2004) 325-357.

47






PRIMITIVE DISKS AND INTERSECTION PATTERN

SANGBUM CHO, YUYA KORA AND JUNG HOON LEE*

ABSTRACT. It is known that the primitive disk complex for a genus-2 Heegaard splitting of the
3-sphere is closed under disk surgery operation. We show that, for a genus-g Heegaard splitting
of the 3-sphere with g > 3, the primitive disk complex for the splitting is not weakly closed
under disk surgery operation. That is, there exist two primitive disks in one of the handlebodies
of the splitting such that any disk surgery on one along the other one yields no primitive disks.
Moreover, we give an example of primitive disks D, Ey, F5 for a genus-g (g > 4) Heegaard
splitting of the 3-sphere satisfying the following conditions:

e I/ and FEs are isotopic.

e Every surgery on F; along D yields primitive disks.

e Every surgery on Fy along D yields non-primitive disks.

1. Introduction

It is well known that any closed orientable 3-manifold can be decomposed into two handle-
bodies V and W of the same genus g, which we call a genus-g Heegaard splitting of the manifold.
We denote the splitting by the triple (V,W;X) where ¥ = 0V = 0W is a closed orientable
surface, called a Heegaard surface, of genus g. In particular, the 3-sphere admits a Heegaard
splitting of each genus g > 0, and it was shown in [11] that the splitting is unique up to isotopy
for each genus. A Heegaard splitting (V, W; %) of a 3-manifold M is said to be stabilized if there
exists essential disks D and D in V and W respectively such that 9D intersects 0D transversely
in a single point. A 3-manifold M admits a stabilized Heegaard splitting of genus-2 if and only
if M is one of the 3-sphere, 5% x S! or a lens space L(p, q).

For a handlebody V' of genus g > 2, the disk complex K(V') of V is the simplicial complex
defined as follows. The vertices are the isotopy classes of compressing disks in V| and a collection
of distinct k + 1 vertices spans a k-simplex if the vertices are represented by pairwise disjoint
disks. The disk complex K(V) is (3g — 4)-dimensional and is not locally finite. When the
handlebody V' is one of the handlebodies of a stabilized genus-g Heegaard splitting (V, W; %),
with g > 2, the disk complex KC(V') has a special kind of subcomplex, called the primitive disk
complex. The primitive disk complex, denoted by P(V'), is the full subcomplex of K(V') spanned
by the vertices of primitive disks. A compressing disk D in V' is called primitive if there exists
a compressing disk D in W such that dD intersects 0D transversely in a single point. We call
such a disk D a dual disk of D.

For the genus-2 Heegaard splitting (V,W;X) of each of the 3-sphere, S? x S and lens
spaces L(p, q), the structure of the primitive disk complex P (V) is fully studied in [1], [2], [3],
[4] and [5]. Understanding the structure of the primitive disk complexes enables us to obtain
finite presentations of the mapping class groups of the splittings by investigating the simplicial
action of the group on the primitive disk complex. Actually, it was shown that the primitive
disk complex P(V) is contractible for the genus-2 Heegaard splitting of each of the 3-sphere,
S? x S* and some lens spaces. Furthermore, the quotient of P(V') by the action of the mapping
class group of the splitting is a simple finite complex for each case, and the group is presented
easily in terms of the isotropy subgroups of the simplices of the quotient.
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The contractibility of P(V') in the case of the genus-2 splittings is based on the fact that
P(V) is closed under the disk surgery operation. In other words, given any two primitive disks in
V' intersecting each other, any surgery on one disk along the other one always yields a primitive
disk, whose meaning explained in detail in the next section. In particular, it was shown in [1]
that the primitive disk complex for the genus-2 Heegaard splitting of the 3-sphere is closed
under disk surgery operation, and so it has been conjectured that it is also true for the higher
genus splittings of the 3-sphere. The main result of this work is to show that it is not true. In
fact, we show further that, in the case of genus g > 3, there exist two primitive disks such that
no surgery on one along the other one yields a primitive disk.

THEOREM 1.1. Let (V,W;X) be a genus-g Heegaard splitting of the 3-sphere with g > 3.
Then the primitive disk complex P(V') is not closed under the disk surgery operation. In fact,
P(V) is not even weakly closed under the disk surgery operation.

Moreover, we give an interesting example of primitive disks with distinct intersection pat-
terns in Section 4, Throughout the paper, any disks (except subdisks of a disk) in an irreducible
3-manifold are always assumed to be properly embedded, and their intersection is transverse
and minimal up to isotopy. In particular, if a disk D intersects a disk F, then D N E is a col-
lection of pairwise disjoint arcs that are properly embedded in both D and E. For convenience,
we will not distinguish disks from their isotopy classes in their notation.

2. Disk surgery operation

Let M be a compact, orientable, irreducible 3-manifold with compressible boundary. The
disk complex IC(M ) for M is a simplicial complex defined as follows. The vertices are the isotopy
classes of compressing disks in M, and a collection of distinct k + 1 vertices spans a k-simplex
if and only if the vertices are represented by pairwise disjoint disks.

Let D and E be compressing disks in M with D N E # @. We warn the reader that the
intersection pattern of D and E may not be unique, by isotopy of D and E. See [8, Example
2.4] for an example. Throughout the discussions on disk surgery that follow, we assume that the
intersection pattern D N E is predetermined. Let A be a disk cut off from F by an outermost
arc 0 of DN E in E such that AN D = §. We call such a subdisk A an outermost subdisk of
E cut off by DN E. The arc 6 cuts D into two subdisks, say € and Cs. Let D; = C; U A
and Dy = Cy U A. By a slight isotopy, the two disks D; and D, can be moved to be disjoint
from D. We say that D; and Dy are the disks obtained by surgery on D along E (with the
outermost subdisk A). Of course there are many choices of the outermost subdisk of E cut
off by D N E, and the resulting two disks from surgery depend on the choice of the outermost
subdisks. We note that each of D; and Dy has fewer arcs of intersection with £ than D had
since at least the arc 0 no longer counts. Further, if D is non-separating, at least one of D; and
D, is non-separating.

DEFINITION 2.1. Let X be a full subcomplex of KC(M).

(1) We say that X is closed under disk surgery operation if for any disks D and E with
DN E # & representing vertices of X', there exists an intersection pattern D N E such
that every surgery on D along E always yields a disk representing a vertex of X.

(2) We say that X is weakly closed under disk surgery operation if for any disks D and E
with DN E # & representing vertices of X', there exists an intersection pattern DN E
with a surgery on D along F yielding a disk representing a vertex of X.

4

It is clear that the “closedness” implies the “weak closedness”. For the weak closedness, it
is enough to find only an outermost subdisk A of E such that at least one of the two disks
obtained from surgery on D along F with A yields a disk representing a vertex of X', while for
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the closedness, we need to show that the surgery with “any” outermost subdisk always yields
a disk representing a vertex of X.

It is easy to see that the disk complex IC(M) itself is closed under disk surgery operation,
and so is the non-separating disk complex, denoted by D(M), the full subcomplex of (M)
spanned by all vertices of non-separating disks. The weak closedness with the closedness have
served as a useful tool to understand the structure of various subcomplexes of the disk complex,
for example we have the following.

THEOREM 2.2. Let X be a full subcomplex of IC(M).

(1) If X is weakly closed under disk surgery operation, then X is connected.
(2) If X is closed under disk surgery operation, then X is contractible.

The first statement of the theorem is easy to verify. Whenever we have two vertices D and
E of X far from each other, that is, D N E # &, then we have an outermost subdisk A of F
cut off by DN E such that the surgery on D along E with A yields a disk, say Dy, representing
a vertex of X. The vertex of D; is joined by an edge to D. If D; N E # &, we do surgery
on D; along E to have a vertex of X and so on. Then eventually we have a path in X from
D to E. The second statement was essentially proved in [9] and updated in [I]. In [I], the
contractibility is proved in the case where M is a handlebody, but the proof is still valid for an
arbitrary irreducible manifold with compressible boundary.

From Theorem we see that the disk complex KC(M) and the non-separating disk complex
D(M) are all contractible. Recall that when a handlebody V is one of the handlebodies of the
genus-g Heegaard splitting (V, W; X), with g > 2, of the 3-sphere, S? x S or a lens space L(p, q),
the primitive disk complex P (V) is the full subcomplex of (V') spanned by the vertices of
primitive disks in V. The following are known results on the primitive disk complexes P(V') for
the genus-2 splittings (see [11, 2, 3, 4]).

(1) For the genus-2 splittings of 3-sphere and S? x S1, the complex P(V) is closed under
disk surgery operation, and hence they are all contractible.

(2) For the genus-2 splittings of lens spaces L(p,q) with 1 < ¢ <p/2,if p =41 (mod ¢),
then P(V) is closed under disk surgery operation and hence it is contractible. If p #Z +1
(mod g), then P(V) is not weakly closed under disk surgery operation, and in fact, it
is not connected.

We remark that the weak closedness and closedness under disk surgery operation are just
sufficient conditions for connectivity and contractibility respectively. It is still an open question
whether the primitive disk complex P(V') in the case of g > 3 for the 3-sphere is connected,
contractible or not, and whether P(V') in the case of g = 3 is contractible or not. Concerning
the connectivity in the case of g = 3, recently Freedman and Scharlemann [6] showed that the
genus-3 Goeritz group for the 3-sphere is finitely generated (the Powell conjecture for g = 3)
and Zupan [12] showed the equivalence of the Powell conjecture and the connectivity of the
reducing sphere complex. From the fact that the reducing sphere complex for g = 3 is connected,
it can be shown that P (V') is connected in the case of g = 3.

3. Primitive curves on the boundary of a handlebody

In this section, we fix a handlebody W of genus g > 2, and a complete meridian system
{Dy,Dy,...,D,} for W. That is Dy, Dy, ..., D, are mutually disjoint essential disks in W
whose union cuts W into a 3-ball. A simple closed curve [ on OW is said to be primitive if
there exists a disk D properly embedded in W such that the two simple closed curves [ and
0D intersect transversely in a single point. We call such a disk D a dual disk of I.

Suppose that the curve [ on OW meets the union of 9D UdDy U - - - U 859 of the oriented
circles transversely and minimally. Fixing an orientation of [, and assigning the symbol x; to
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OD; for each i € {1,2,..., g}, the curve [ represents the conjugacy class c(l) of an element of

the free group 71 (W) of rank g. That is, [ determines a word w in {27 23, ... ,x5'} (up to

cyclic permutation) that can be read off from the intersections of [ with each of 9D;’s. Hence [
represents an element [w] of the free group m (W) = (x1, xa, ..., z,) (up to conjugation). Recall
that an element of a free group is said to be primitive if it is a member of some of its free
basis. If an element of a free group is primitive, then any element of its conjugacy class is also
primitive. Thus we simply say that a simple closed curve [ represents a primitive element of
m (W) if a member (thus every member) of ¢(l) is primitive. The following lemma provides a
geometric interpretation of the primitive elements.

LEMMA 3.1 (Gordon [7]). An oriented simple closed curve | on OW is primitive if and only
if | represents a primitive element of m (W).

Consider the free group F, = (x1,a,...,x,) of rank g. Given 1 < ¢’ < g, let w be a word
in {oF o5t ,xéc,l}. It is clear that if the element represented by w is primitive in the free
group Fy = (x1,%9,...,2,), then so it is in F, = (x1,29,...,x,).

LEMMA 3.2. Suppose that a word w in {ﬁﬂ,x;ﬂ, . ,x;t,l}, where 1 < ¢’ < g, represents
a primitive element of F,. If there exists an oriented simple closed curve l on OW such that

[w] € c¢(l) and IND; = @ for eachi € {g'+1,...,g}, then w also represents a primitive element
Of Fg/ .

PROOF. Suppose that [ represents a primitive element of F,. By Lemma , there exists
a dual disk D of [ in W. Let W’ be the genus-¢’ handlebody obtained by cutting W along
Dy U---UD,. If the disk D is disjoint from D; for each j € {¢’ +1,..., g}, then D is again
a dual disk of [ in W’. Thus [ is a primitive curve on W', and so by Lemma [3.1] again, w
represents a primitive element of 7 (W') = (1, 29,...,2y).

If D intersects Ej for some j € {¢’+1,...,9}, then we choose an outermost subdisk of ﬁj
cut off by DN Ej. Then exactly one of the two disks, say EI, obtained by surgery on D along
D; with this outermost subdisk is again a dual disk of [ in . Note that D’ has fewer arcs of
intersection with Ej than D had. If D' still intersects Eg/H u---u 55,, we repeat this process
finitely many times to obtain a dual disk D" of i disjoint from Ej foreach j € {¢'+1,...,9}. O

4. Proof of Theorem and intersection pattern example

We first consider the genus-3 Heegaard splitting (V, W;3) of the 3-sphere. Fix a complete
meridian system {D;, Dy, D3} for W, and assign the symbol z; to the oriented circle dD; for
each i € {1,2,3}. Then any oriented simple closed curve [ on 0W determines a word w of the
free group m (W) = (x1, x9, x3) up to cyclic permutation.

Figure[7| depicts two disks D and F in V. The disk F is the band sum of two parallel copies
of the disk in Figure (a) with the “half-twisted” band wrapping around 9D as described.
It is obvious that D is a primitive disk with the dual disk D,. The disk E is also primitive by
Lemma since we read off a word determined by OF from Figure [7| (with a suitable choice
of orientations) as

1, -1 -1 -1 1,1 =1 -1 1. 1
(X125 1Ty T1ToT] ToToxy ) (T1Xy Ty T1TH T ToX] ToXi )T,

and this word is reduced to x5y, representing a primitive element.

It is easy to see that the intersection pattern D N F is unique as well as it consists of two
arcs. For each of D and E, there are two outermost disks. Any disk obtained by any surgery on
D along E (and on E along D) is one of the two disks in Figure [L5] The disk in Figure [L5(a)
determines a word w; of the form xyz; 1x1x2xf1x2, while the disk in Figure (b) determines a
word wy of the form $1$2_1.I1$2_1$11‘2$;11’2!1721)1_1.1‘2. Both disks are disjoint from 9D; and hence

52



~
~/N
N,
-
-

1 -) X1 LN X7
R WA 8 ‘.
AN Y
' viw
\\\\\\‘ . /,/ : !
(PR ’ I3 ' Al .
O TRY .(&(
\~~‘--_’,’ N1
- (e N
E ///' 1

FI1GURE 8. The disks obtained by surgery.

the generator x3 does not appear in both w; and ws. So w; and ws represent elements of the
free group (x1,z2). We observe that each of w; and w, is cyclically reduced and contains x4
and 7' simultaneously (also 2, and x,' simultaneously). Thus, by Osborne-Zieschang [10],
the elements represented by w; and ws are not primitive in the free group (z1,xs), and hence
are not primitive in the free group (xi, x5, x3) by Lemma Thus the two disks in Figure
are not primitive in V' by Lemma [3.1]

So far we gave an example for the genus-3 Heegaard splitting of the 3-sphere, but the same
argument applies for any genus g with g > 3. See Figure [16l We remark that even though the
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pair (D, F) demonstrates that P(V) is not weakly closed under disk surgery operation, they
are still connected by a path of length two in P(V).
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FIGURE 9. Primitive disks D and E for the case of genus g > 3.

Figure [17) depicts primitive disks D, E, E, for a genus-4 Heegaard splitting of S? satisfying
the following conditioins:

e F) and E, are isotopic.
e Every surgery on F; along D yields primitive disks.
e Every surgery on F5 along D yields non-primitive disks.

F1GURE 10. Primitive disks with distinct intersection patterns.
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STICK NUMBERS OF MONTESINOS KNOTS

HWA JEONG LEE, SUNGJONG NO* AND SEUNGSANG OH

ABSTRACT. Negami found an upper bound on the stick number s(K) of a nontrivial knot K
in terms of the minimal crossing number ¢(K): s(K) < 2¢(K). Huh and Oh found an improved
upper bound: s(K) < 3(¢(K)+1). Huh, No and Oh proved that s(K) < ¢(K)+2 for a 2-bridge

knot or link K with at least six crossings. As a sequel to this study, we present an upper bound
on the stick number of Montesinos knots and links. Let K be a knot or link which admits a
reduced Montesinos diagram with ¢(K) crossings. If each rational tangle in the diagram has
five or more index of the related Conway notation, then s(K) < ¢(K) 4 3. Furthermore, if K
is alternating, then we can additionally reduce the upper bound by 2.

1. Introduction

A stick knot is a knot which consists of finite line segments, called sticks. The stick number
s(K) of a knot K is the smallest number of sticks needed to construct K. The stick presentation
of knot is chemically useful because it can provide a model of the molecular structure. The stick
number of the model indicates how complex the molecular structure is.

In 1991, Negami [6] found lower and upper bounds for the stick number of any nontrivial
knot or link K other than the Hopf link in terms of the minimal crossing number ¢(K). That
is given by Negami’s inequality:

5+ V8c(K) +9 < s(K) < 2¢(K).
5 <

Calvo [2] improved the lower bound to (REVAECIAE W. Huh and Oh [4] utilized the arc index a(K)
to determine a more precise upper bound, showing that s(K) < 2(c¢(K) + 1) for any nontrivial
knot K. They mainly used the fact that a(K) < ¢(K) + 2 for any nontrivial knot K in [1] and
converted any minimal arc presentation of K into a stick knot by using 3(a(K) — 1) sticks.

There are several results about upper bounds on the stick number for 2-bridge knots. Mc-
Cabe [5] proved that s(K) < ¢(K) + 3 for any 2-bridge knot K other than the unlink and the
Hopf link. Huh, No and Oh [3] reduced this upper bound by 1 for 2-bridge knots with at least
six crossings. They described the standard projection of a 2-bridge knot in terms of rational
tangles using the Conway notation and then constructed each integer +n-tangle by using n + 1
sticks.

In this paper we apply this construction to find an upper bound on the stick number of
Montesinos knots. A Montesinos knot is defined as a knot admitting a diagram obtained by
putting rational tangles together in a circle.

THEOREM 1.1. Let K be a Montesinos knot or link which admits a reduced Montesinos
diagram with c(K) crossings. If each rational tangle in the diagram has five or more index of
the related Conway notation, then

c(K)+1 if K is alternating,
c(K)+3 if K is non-alternating.
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2. Proof of Theorem [3.2]

2.1. Stick rational tangle.
We first construct stick representations of rational tangles, which are basic building blocks

of a Montesinos knot.

We construct a rational tangle of Conway notation [t, %, ..., ;] for all positive integers t;
and odd m by using t1 +ta+ - - - + t,,, + 1 sticks. See Figure [I1 When all ¢;’s are greater than 1,
Figure (a) describes how to connect integer tangles together to build a rational tangle with
t1 + 1ty + -+t + 1 sticks. When some ¢;’s are 1, Figure [L1[b) and Figure [11](c) show the
number of sticks to make the rational tangle does not exceed this number.

a ﬁ_l N
~h ’\ E— >

e v A

\ -
., 162)_}@\

tm,ﬁ / //\// 1@?1_, \]d\

JNY

F1GURE 11. How to construct a stick rational tangle

To compose rational tangles, we denote the four end points of stick rational tangle R by
a,b,c, and d and the related end sticks by [,, Iy, l. and l4, respectively as illustrated in Fig-
ure [11](a).

From now on, we consider a rational tangle as a stick representation of the rational tangle
together with the virtual box.

2.2. Stick Montesinos knot.
By Figure 12| and Figure 13| we can construct the stick presentation of alternating knot and
non-alternating knot respectively. Let K be an alternating Montesinos knot.

FiGURE 12. Alternating Montesinos knot

For alternating case, the total number of the sticks used to construct K becomes ¢(K)+1. For
non-alternating case, two more sticks are needed to construct K. This says that s(K) < ¢(K)+3
if K is non-alternating. We complete the proof.
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F1GURE 13. Non-alternating Montesinos knot
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LOWER CENTRAL SERIES AND HOMOLOGY CYLINDERS

MINKYOUNG SONG

ABSTRACT. All of Johnson homomorphisms of a mapping class group of a surface, Milnor
invariants and Orr invariants of links are related to lower central series of a free group. Moreover,
it is known that they are closely connected. In this talk, we consider extension of those invariants
to homology cylinders and a filtration via their kernels. A homology cylinder is a kind of
3-manifold, which is a generalization of both a string link and a mapping class group. We
determine the images of the filtration under the invariants and get relations of quotients of
the filtration to automorphism groups of free nilpotent groups, and free Lie algebras. We also
obtain the numbers of linearly independent invariants.
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MINIMALLY KNOTTED SPATIAL CUBIC GRAPHS WITH TWO VERTICES

HYUNGKEE YOO

ABSTRACT. A spatial graph is called minimally knotted if it is nontrivial, but every proper
subgraph is trivial. Clearly, the minimum degree of any minimally knotted spatial graph is
at least two. If every degree of vertex is two, then it becomes a Brunnian link. Therefore, we
consider the simplest case, the minimally knotted spatial cubic graph with two vertices. In this
paper, we observe the properties of a minimally knotted spatial cubic graph with two vertices.
Using these properties, we find exact values of lattice stick numbers for several spatial graphs.

1. Introduction

All definitions and statements throughout this paper will concern the piecewise linear cat-
egory.

A graph T is a finite one-dimensional CW-complex, and a spatial graph G is an embedded
graph in S®. Two spatial graph are equivalent if there is an ambient isotopy between them. A
spatial graph is called unknotted or trivial if it is equivalent to a plane graph. Otherwise, it is
knotted or montrivial.

DEFINITION 1.1. A spatial graph is called minimally knotted if it is nontrivial, but every
proper subgraph is trivial.

Clearly, if spatial graph has a degree 0 or 1 vertex, then it cannot be minimally knotted. In
1993, Wu showed the following theorem.

THEOREM 1.2 (Wu, 1993). If ' is a planar graph with no degree 0 or 1 wvertices, then it
admits a minimally knotted embedding into S3.

\</ OO

FIGURE 14. Borromean link and Kinoshita theta-curve

If every degree of vertices is two, then Minimally knotted graphs are Brunnian links. Thus
we consider the cubic (or trivalent) graphs.

A theta-curve is a graph in R?® (or in S3) which consists of two vertices and three edges
between them. Two theta-curves are considered to be equivalent if there exists an ambient
isotopy taking one to the other. Especially, since theta-curves are trivalent graphs (or cubic
graphs), we can consider a theta-curve in the cubic lattice Z3 = (R x Z x Z) U (Z x R x Z) U
(Z x Z x R). That is, the vertices are located at lattice points, and the edges consist of sticks
parallel to the x, y, or z-axes. This theta-curve is called a lattice theta-curve. The lattice stick
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number sp,(0) of a theta-curve O is the minimal number of sticks necessary to construct lattice
theta-curve which is equivalent to ©.

A graph in R3 is said to be trivial if it is equivalent to a graph on a plane, otherwise
nontrivial. Let e be an edge of given theta-curve ©. The cycle consisting of two edges of O,
except for e, is called a constituent knot of © corresponding to e. If © is nontrivial and every
constituent knot of © is trivial, then this theta-curve is called a Brunnian theta-curve.

W
VI e

(a) (b) (c)
F1GURE 15. Examples of Brunnian theta-curves

The most famous example of a Brunnian theta-curve is the Kinoshita theta-curve [8]. In
[15], Wolcott generalizes the Kinoshita theta-curve to the theta-curve Figure (a) where
the integers 4, j and k mean that the number of full twists in each box. This theta-curve is
called Kinoshita- Wolcott theta-curve. If i = j = k = 1, then the Kinoshita-Wolcott theta-curve
becomes the Kinoshita theta-curve as in Figure[15| (b). In addition, the Kinoshita theta-curve is
51 theta-curve in moriuchi’s table [11]. as in Figure|15] (¢). In Example 3.3.12 of [14], Thurston
proved that the Kinoshita theta-curve is hyperbolic. Jang et al. [7] introduce more Brunnian
theta-curves. They suggested the question that their examples are hyperbolic.

A theta-curve O is rational if it is nontrivial and there is a 2-sphere which bounds two
3-balls B; and B, in S® as shown in Figure [16]

U —>X
[ §

FIGURE 16. rational theta-curve

In [2], Harikae shows that above © is trivial if and only if the constituent knot corresponding
to edge e in B;. That is, every Brunnian theta-curve is not rational.

2. Order-3 vertex connected sum and tight disk

Like a connected sum of two knots, there is an operation of two theta-curves which constructs
new theta-curve. Suppose that ©; and O, are theta-curves in S®. Take vertices v, of ©; and
vy of Oy. We can construct a new theta-curve by removing regular open neighborhoods of v;
and v, and gluing the resulting 3-balls together along their boundaries so that a point from
©; is matching to a point from O, as in Figure Then we call this operation the order-3
vertex connected sum and denote the result theta-curve as ©;#30,. Note that an order-3 vertex
connected sum ©,#50, is not unique. Let © be a theta curve in S3. A 2-sphere S is said to be
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decomposing sphere if S meets each edge of © transversally at exactly one interior point of the
edge.

FIGURE 17. the order-3 vertex connected sum ©;#30,

A theta-curve O is said to be prime if it satisfies the following three conditions:
e it is nontrivial;
e it is not the connected sum of nontrivial knot and (possibly trivial) theta-curve;
e it is not the order-3 vertex connected sum of two nontrivial theta-curves.

In [9], Litherland announced a table of prime theta-curves with up to seven crossings.
However, he did not prove that the table is complete. In [11], Moriuchi proved that Litherland’s
table is complete by using Yamada polynomial. If © is Brunnian, then we just consider the third
condition to check that © is prime by definition of a Brunnian theta-curve. By the definition, a
constituent knot of ©1#30, is the connected sum of a constituent knot of ©; and a constituent
knot of ©,. Since the connected sum of two trivial knots is trivial, the order-3 vertex connected
sum of two Brunnian theta-curves is also Brunnian [15].

Let © be a Brunnian theta-curve. Since every constituent knot K of © is trivial, there is
an embedded disk Dy which is bounded by K. This disk D is called a tight disk for © if the
intersection number |Dyx N {©\ K}| is minimal among all possible cases of a constituent knot
K and a bounded disk Dg. This minimum intersection number is denoted by 7(0).

We recall that the order-3 vertex connected sum of two Brunnian theta-curves is also a
Brunnian theta-curve.

THEOREM 2.1. Let ©1 and ©y be any Brunnian theta-curves. Then
T(01#3602) > 7(01) + 7(02).

PROOF. Let © = ©1#30, be the order-3 vertex connected sum of ©; and ©,, and let S be
it’s decomposing sphere. Let Dg be a tight disk of © with a constituent knot K and let e be
the remaining edge of ©.

We assume that Dy and S intersect transversely, and so Dg N .S consists of several loops
and a simple arc a whose endpoints lie on K. By using the standard innermost disk argument
we will remove these loops of the intersection. Let v be an innermost loop of the intersection
of D NS in S, bounding a disk £ in S and a disk F' in Dg as in Figure . Note that Dx N E
is empty.

We consider the case that the remaining edge e meets S in E. 1f e does not pass through F,
then the two vertices of © are located on each side of the sphere E'U F'. Then the two edges of
O constructing K must pass through E contradicting Dy N E = @. In this case, e must meet
F.

Now a 2-surgery of Dy along the disk F converts D into a sphere and a disk D’. Whether
e passes through E or not, | D’ Ne| is less than or equal to |Dx Ne|. So D' is also a tight disk
for ©. Since D' N S has less loops than Dg NS, by repeating this argument, we can assume the
intersection Dg N S consists of only an arc a.

Split the tight disk Dg along the arc o into two disks D; and D, which can be also
considered as disks bounding some constituent knots of Brunnian theta-curves ©; and O,
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FIGURE 18. A schematic diagram of Dy

respectively. This implies that
7(©) > 7(01) + 7(62).

We complete the proof of superadditivity of 7 under the order-3 vertex connected sum. U

We introduce Scharlemann and Thompson’s result [13] regarding maximal Euler character-
istics of oriented links. A Seifert surface for an oriented link L is a compact oriented surface
none of whose components are closed and whose boundary is the link. Define x(L) to be the
maximal Euler characteristic of all Seifert surfaces for L.

THEOREM 2.2. [13| Theorem 1.4] Suppose L., L_ and Ly are three links under a skein
relation. Then two of x(Ly), x(L_) and x(Lo) — 1 are equal and are no larger than the third.

Let v; and vy be two vertices of given ©, and let e be a edge of ©. We choose an orientation
of © so that vy is a terminal point of e and v; is a terminal point of the other edges. Notes that
this orientation does not allow source and sink points. Following the definition in [10], we call
this the Y-orientation corresponding to e.

THEOREM 2.3. Let © be a Brunnian theta-curve. Then 7(©) > 2.

PROOF. Suppose a Brunnian theta-curve © has 7(0) < 1. Let Dy be a tight disk of © with
a constituent knot K and let e be the remaining edge of ©.

First we assume that 7(0) = 0. Choose an embedded disk D’ bounded by another con-
stituent knot of © which contains e. By using the standard innermost disk and outermost arc
arguments, we may assume that the interiors Dy and D' do not intersect. This implies that ©
is contained in a disk Dy U D', and hence © is trivial.

Now we assume that 7(0) = 1. Then © is prime by above result and Theorem Take
the Y-orientation corresponding to e. Consider a regular projection of © into R2. Then we
modify © by shrinking Dy so that projection image of Dk is a small disk and the edge e
crosses the boundary of Dy twice as drawn in the left side of Figure After that, we give the
Y-orientation corresponding to e on ©. Let e, denote the edge of © that has a positive crossing
with e, and let e_ denote the edge that has a negative crossing with e. Consider the constituent
knots Ky = eUey and K_ = eUe_. Then K; and K_ differ only at the crossing in the
projection image of disk E. Take a link K so that K, K_ and K| satisfy a skein relationship.
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K(i} > &\L va :(\f—f’. ._

:K+ KL

F1GURE 19. Skein triple

Since © is Brunnian, y(K;) = x(K_) = 1. Thus x(Kp) — 1 > 1 by Theorem [2.2] This implies
that Ky is the trivial link with two components, and hence it is a split link.

Let S be a splitting sphere of Ky with the minimum number of intersections with ©. Then
S meets transversally © at two points inside the edge e. Press S along the part of the edge
e that does not pass through the disk Dg. Then we obtain the splitting sphere S of K, such
that S meets once with each edge of ©. That is S is the decomposing sphere of order-3 vertex
connected sum. But since © is prime, one part of order-3 vertex connected sum is trivial. Thus
after Reidemeister moves for spatial graph, we reduce the number of intersection of the disk
Dy and the edge e. This is a contradiction, and hence the result follows. 0

Note that, Figure (c) shows that the minimum intersection number of the Kinoshita
theta-curve is at most two. Thus the lower bound in the above theorem is optimal.

3. Application

Only this section deals with not only theta-curves but whole spatial graphs. For a lattice
spatial graph G, let |G| denote the number of sticks of G. A stick of G which is parallel to the
z-axis is called an z-stick. The number of x-sticks of G is denoted by |G/,.. In the same manner,
we define y- and z-sticks. Two lattice spatial graphs are said to be equivalent if they are ambient
isotopic in R®. A lattice spatial graph G is called reducible if there is another equivalent lattice
spatial graph which has fewer sticks. Otherwise, it is called irreducible.

An zy-plane (so perpendicular to the z-axis) is called a z-level of G if it contains some
x-sticks or y-sticks of GG. For some integer ¢, the z-level with height ¢ is denoted by Z;. If G
has n z-levels, then, without loss of generality, these z-levels are considered as 1,2,...,n like
height numbers. Note that a z-stick whose endpoints lie on the z-levels Z; and Z; has length
|i — j|, simply denoted by z;;. Similarly, we denote i-th z- and y-level to X; and Y; respectively.
Also z-stick between X; and X is denoted by x;;, y-stick between Y; and Y} is denoted by y;;.

A lattice spatial graph G is said to be properly leveled with respect to the z-coordinate
if each Z; contains exactly one connected component of G N Z; which consists of z-sticks or
y-sticks, and some singletons coming from z-sticks passing through Z;. If GG is properly leveled
with respect to every coordinate, then it is simply said to be properly leveled. This definition
is in the same context as that of proper levelness for knots [4], 5] and links [3].

LEMMA 3.1. Every lattice spatial graph can be deformed to be properly leveled with the
number of sticks preserved.

PROOF. The proof follows that Lemma 2.1 of [4]. Suppose that some Z; contains the portion
H of GG, which has more than or equal to two components consisting of x-sticks or y-sticks.
Here we ignore the singletons on this level. We re-arrange z-levels so that Z; for j > 7 moves
one step-up to Z;1;. Now pick one connected component H; in H, move it one step-up to Z; 1,
and make the related z-sticks longer or shorter so that they are still adjoined to H;. Repeat
this operation for every component of H except the last one and at every z-level. Then we
obtain the properly leveled lattice spatial graph with respect to the z-coordinate. Repeat the
same arguments with respect to the x- and y-coordinates. One notices that this operation is an
ambient isotopy and the number of z, y and z-stick have remained unchanged. O
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Using properties of tight disk, we can provev the following theorem.
THEOREM 3.2. Let © be a Brunnian theta-curve. Then sp(©) > 17.

We observed the properties of Brunnian theta curves and used these properties to prove the
lower bound of lattice stick number of Brunnian theta-curves. We found examples for a lattice
Kinoshita theta-curve with 18 sticks. One of examples is drawn in Figure [20, Therefore, we
suggest the following question.

QUESTION. Should a lattice Brunnian theta curve consists of at least 18 sticks?

If this question is true, then the lower bound in the question is optimal. Furthermore the
lattice stick number of the Kinoshita theta-curve is exactly 18.

Z34 724

FI1GURE 20. A lattice Kinoshita theta-curve with 18 sticks.
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