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Preface

The first Workshop on Geometry and Topology aroung Young-Nam was held at Kyungpook
National University in Daegu, Korea from November 19 to 21. There were 16 participants from
Young-Nam area and one special guest from Incheon. Most of the participants are in early
career such as students, post-docs, and assistant professors.

The academic program consisted of 10 indivisual lectures and this proceeding contains all
articles which are either full paper versions or extended abstracts.

The workshop was mainly supported by National Research Foundation of Korea, several
researcher programs led by Byung Hee An and Youngjin Bae, by Seung Yeop Yang, and by
Juncheol Pyo. The workshop was also partly supported by the Conference Supporting Program
of Kyungpook National University.

Last but not least, we thank all participants and speakers for making the workshop a great
success. We hope this workshop will continue in future.

November 25, 2020
Byung Hee An, Kiryoung Chuyng, Juncheol Pyo and Seung Yeop Yang.
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CONFIGURATION SPACES OF GRAPHS

BYUNGHEE AN

Department of Mathematics Education, Kyungpook National University, Korea

Abstract. The configuration space of a topological space is a collection of a number of points
without collision. It can be used to define the braid group over any topological space. In
this article, we focus on the configuration spaces of graphs and discuss how we can extract
geometric or combinatorial invariants of the underlying graphs from homotopy invariants of
their configuration spaces.

1. Preliminaries

Let X be a topological space which is locally compact Hausdorff. Basically, the space X is
a collection of points in X, which sounds like a tautology.

X = {x | x ∈ X}

However, one may regard each point x ∈ X as the map fx from the singleton set {1} to X such
that the image of the element 1 under fx is precisely x.

X ∼= Emb([1], X) := {f : [1]→ X},

where [1] = {1} and Emb(A,X) is the space of embeddings of A into X.
By this way, we may extend the space X as follows: since X is a collection of embeddings of

one-point, we now consider collections of embeddings of two points, three-points, and n points
in general, which will be denoted by Confn(X) and called the ordered n-configuration space of
X

Confn(X) := Emb([n], X), [n] = {1, 2, . . . , n}.

One can easily check that

Lemma 1.1. The following holds:

(1) the ordered 0-configuration space Conf0(X) is the singleton set.

Conf0(X) = {∗}

(2) the ordered 1-configuration space Conf1(X) is the space X itself.

Conf1(X) ∼= X

(3) the ordered n-configuration space is the complement

Confn(x) ∼= Xn \∆ = {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j},

where ∆ is the big diagonal of Xn.



For example, for the interval X = (0, 1),

Conf1(X) = X,

Conf2(X) = {(x1, x2) ∈ X2 | x1 6= x2},
Conf3(X) = {(x1, x2, x3) ∈ X2 | x1 6= x2 6= x3, x1 6= x3}.

Notice that Confn(X) is nothing but n!-copies of the open n-simplex. Indeed, for any X,
there is an action of the symmetric group Sn by permuting coordinates. Namely, for each σ ∈ Sn
and x = (x1, . . . , xn) ∈ Confn(X),

σ · x := (xσ(1), . . . , xσ(n)).

Then the group Sn acts on Confn(X) properly discontinuously so that the orbit space denoted
by Bn(X) admits the covering space Confn(X) with the deck transformation group Sn and is
homeomorphic to the space of unordered distinct n points in X

Bn(X) = Confn(X)/Sn ∼= {{x1, . . . , xn} ⊂ X | xi 6= xj if i 6= j}.
We call Bn(X) the (unordered) n-configuration space of X and define the (indexed) union

B(X) :=
∐
n≥0

Bn(X)

called the total (unordered) configuration space of X.
The total configuration space has the following properties:

Proposition 1.2. For each embedding f : X → Y , there is an induced embedding

B(f) : B(X)→ B(Y )

which makes B a functor
B : Emb→ Emb,

where Emb is the subcategory of Top with embeddings as morphisms.

Proposition 1.3. For two spaces X, Y , there is a canonical homeomorphism

B
(
X
∐

Y
)

= B(X)×B(Y )

Therefore, the functor B is indeed a functor between monoidal categories

B :
(
Emb,

∐)
→ (Emb,×).

2. Braid equivalences

It is obvious that for two homeomorphic spaces X and Y , their total configuration spaces
are also homeomorphic and vice versa.

X ∼= Y ⇐⇒ B(X) ∼= B(Y )

Remark 2.1. Remember that B(X) contains X as a connected summand.

Then how about the homotopy equivalences? Obviously, X and Y are homotopy equivalent
if so are total configuration spaces B(X) and B(Y ).

B(X) ' B(Y ) =⇒ X ' Y.

However, the converse is not always true. For example, the disk X = D2 and the point Y = ∗
are homotopy equivalent but for n ≥ 2, Bn(Y ) = ∅ while Bn(X) 6= ∅.
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Definition 2.2 (Braid equivalence). We say that two spaces X and Y are braid equivalent
denoted by

X
B' Y

if their total configuration spaces are homotopy equivalent.

The above discussion implies that the braid equivalence is strictly finer than the homotopy
equivalence.

For the comparison between homeomorphicity and braid equivalent, we have the following
lemma.

Lemma 2.3. Let X = D2 ∨∂ I be the boundary join of the disk D2 and an interval I and let
Y = D2. Then X and Y are braid equivalent.

In particular, the homeomorphicity is strictly finer than the braid equivalence.

Hence the braid equivalence is exactly in between homeomorphicity and homotopy equiva-
lence

X ∼= Y X
B' Y X ' Y/ /

and it gives us the following natural question.

Question. How much can the braid equivalence separate spaces? Or, how strong are ho-
motopy invariants of total configuration spaces?

Remark 2.4. The reason why we call the above equivalence the braid equivalence is as
follows: any path γ in the n-configuration space Bn(X) will give us a simultaneous motion of
n-particles on X without collapsing. If we present this motion as a graph of γ in the space
X × I, then we can really see the braiding of n-strands in X × I.

3. Homotopy invariants

In this section, we will review known results about homotopy invariants such as homotopy
groups or homology groups for total configuration spaces.

Theorem 3.1 (Farley-Sabalka, Ko-Park,. . . ). The following holds:

(1) For compact surfaces X and Y ,

X
B' Y ⇐⇒ π1(B(X)) ∼= π1(B(Y ))⇐⇒ X ∼= Y

(2) For trees T1 and T2,

T1
B' T2 ⇐⇒ H∗(B(T1)) ∼= H∗(B(T2))⇐⇒ T1

∼= T2

Theorem 3.2 (A.-Park, pub. in Topol. Appl.). For any finite simplicial complex X, the
homotopy invariants determines the following embeddabilities:

(1) X embeds into a circle S1:

X ⊂ S1 ⇐⇒ π1(Bn(X)) = Z ∃ or ∀n ≥ 3

(2) X embeds into a surface Σ different from S2,RP 2:

X ⊂ Σ⇐⇒ π1(Bn(X)) is torsion-free ∃ or ∀n ≥ 2.

(3) X embeds into the plane R2:

X ⊂ R2 ⇐⇒ H1(Bn(X)) is torsion-free ∃ or ∀n ≥ 2.
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As seen above, the homotopy invariants give us geometric informations for the underlying
space X. In particular, it separates all surfaces and trees. However, only a few information had
been known for graphs.

4. Configuration spaces of graphs

In the study of configuration spaces, it tends to be harder for graphs rather than for surfaces
or manifolds.

One may see the reason below. Imagine a path (or a motion) of n distinct points in X. What
happens if two points approach to each other? If the space they belong to is large enough, then
points can avoid each other and go their own ways. How about the case when two points
encounter each other on a single log bridge? Can they still change their position? The answer
depends on whether our space X has another bridge or there is a spot for one to give way to the
other, which is a question about the global shape of the space. This interesting situation is due
to that our space is assumed to be very restrictive, just like a graph, which is a one-dimensional
singular space.

Indeed, studying configuration spaces of graphs is related with many real-life questions
including robots in a factory, trains on the tracks, motion planning and so on. Rather deeply,
one may find the relation between entanglements of particles over graphs, a braiding, and
architectures for topological quantum computers.

Mathematically, these braiding can be captured by homology cycles.
The configuration space of one particle over the graph is nothing but the graph itself and

so the only nontrivial motion is represented by a loop of the graph. Hence we are able to
detect loops from the configuration space. For two particles over the graph, we have additional
nontrivial motion, called a star move (or star class), that occurs at whereever the three-way
junction exists.

(a) A loop move

2 1

3

(b) A star move

Figure 1. One- and two-particle motions over graphs

These two moves are elementary moves and enough to describe one-dimensional motions.
Two- or higher-dimensional motions may exist as well even though it is not easy to imagine
them. One easiest example of such motions is to consider loop and star moves simultaneously
and independently at various and disjoint positions.

4.1. Edge stabilizations and module structures. On the other hand, the configuration
spaces of graphs have an action of edges, called a stabilization which adds a particle on the
desired edge. This is never possible for non-graphs and probably no one believes that the
stabilization is possible since the manipulation of configuration spaces is hardly continuous.

Theorem 4.1 (A.–Drummond-Cole–Knudsen, pub. in Doc. Math., Geom. Topol.). For a
finite graph Γ = (V,E), the following holds.
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Figure 2. Stabilization on an edge by taking averages

(1) The toal configuration space B(X) has Z[E]-action and so the singular chain complex
C(B(X)) is a Z[E]-module.

(2) There exists a finitely generated double complex S(Γ), called a Swiatkowski’s complex,
which is Z[E]-module such that there is a quasi-equivalence

S(Γ) ' H∗(C
sing(B(X)))

as Z[E]-modules.

4.2. Fomalities. Now we have a Z[E]-module structure on homology group and we may
ask its formality.

Remark 4.2. Once it turns out to be formal, then the Künneth spectral sequence will
collapse and so we may build up the homology group of larger graphs from those of smaller
graphs by the cut-and-paste method.

Theorem 4.3 (A.–Drummond-Cole–Knudsen, pub. in Doc. Math., Geom. Topol.). As
Z[E]-modules, the homology group H∗(B(X)) is formal if and only if Γ is one of small graphs
depicted in Figure 3.

Figure 3. Complete list of edge-formal graphs

4.3. Betti number polynomials and growths. One another observation is that since
E is finite and S(Γ) is finitely generated, the sequence of i-th betti numbers will be eventually
a polynomial of n. That is, for each i, there exists a polynomial P Γ

i (n) such that

P Γ
i (n) = rank(Hi(Bn(Γ))), n� 1.

What we have found is the degree of P Γ
i (n) is indeed the combinatorial invariant of Γ, which

is the maximal possible number of pieces after removing i-vertices from Γ.

Theorem 4.4 (A.–Drummond-Cole–Knudsen, pub. in Geom. Topol.). For i ≥ 2,

degP Γ
i (n) = ∆Γ

i − 1,

where

∆Γ
i = max

W⊂V
|W |=i

|π0(Γ \W )|.
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i ∆Γ
i ∆Γ

i − 1 dimHiBk(Γ) valid for

0 1 0 1 all k

1 1 0 4 k ≥ 2

2 2 1 6k − 15 k ≥ 3

3 4 3 4
(
k−3

3

)
all k

4 6 5
(
k−3

5

)
all k

≥ 5 −∞ −∞ 0 all k

Figure 4. A verification of Theorem 4.4

5. Conclusion

The study of graphs via configuration space has turned out to be very useful. It gives us
lots of information, most of which are distinguishable from those coming from combinatorics.

Although we have successfully found some nice invariants from the configuration spaces, we
still believe that a lot more interesting aspects are there under the veil.
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PROPERTIES OF SOLITONS FOR THE INVERSE MEAN CURVATURE
FLOW

DAEHWAN KIM

Department of Mathematics Education, Daegu University, Korea

Abstract. Inverse mean curvature flow has been extensively studied as a geometric flow
and for applications to establish several geometric inequalities. Analyzing special solutions of
types of geometric flow is helpful to understand the flow itself and so does the inverse mean
curvature flow. In this talk, we consider the homothetic and translating solitons for the inverse
mean curvature flow as special solutions deformed by only homothety and translation under
the flow, respectively. To be specific, we introduce several examples of the solitons and then,
the incompleteness of any translating soliton and the homothetic solitons with some restricted
homothetic ratio, namely, 0¡ C ¡ 1/n. Their area growth is also provided.

1. Preliminaries

Definition 1.1 (Inverse mean curvature flow). A smooth family of immersions F : Σ ×
[0, T ) → Rn+1, 0 < T ≤ ∞ is called a solution of the inverse mean curvature flow (IMCF) if
Ft satisfies the equation

∂

∂t
Ft(p) = − 1

Ht(p)
νt(p),

for any p ∈ Σ and t ∈ [0, T ), where Ht and νt are the mean curvature and inward unit normal
vector field of Ft, respectively.

We shortly introduce two inequalities using IMCF: Gerhardt and Urbas (1990) proved inde-
pendently that a closed, star-shaped, mean-convex Euclidean hypersurface evolves into a round
sphere along IMCF after rescaling. The following quotient of a closed Euclidean hypersurface
Σ

Q(Σ) =

∫
Σ
HdA

|Σ|n−1
n

,

is monotone decreasing (P. Guan-J. Li, 2009) if we deform Σ by IMCF. Minkowski’s inequality
in arbitrary dimensions: ∫

Σ
HdA

|Σ|n−1
n

≥ n|Sn|
|Sn|n−1

n

= n|Sn|
1
n .

Let Σ be a closed surface in a Riemannian manifold (M3, g). The Hawking mass of Σ is
defined by

mH(Σ) =

√
|Σ|
16π

(
1− 1

16π

∫
Σ

H2dA

)
.
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Geroch showed that if M has Rg > 0, then mH(Σt) is monotone increasing under the IMCF.
If we assume that M is asymptotically flat, then mH(Σt) → mADM(M) as t → ∞. By taking
Σ0 as the event horizon, Riemannian Penrose inequality is obtained as follows:

mADM(M) ≥ mH(Σ0) =

√
|Σ0|
16π

.

However, a weak solution approach resolved by Huisken and Ilmanen is needed from H ≡ 0 at
t = 0.

2. Solitons for the inverse mean curvature flow

2.1. Homothetic solitons.

Definition 2.1 (Homothetic soliton). The hypersurface Σ is called a homothetic soliton if
there exists a nonzero constant C such that

〈
−→
H, x〉 = − 1

C
,

where
−→
H is the mean curvature vector of Σ.

The homothetic soliton has a solution form {Σt = eCtΣ}. If C is positive/negative, then Σ
is an expender/shrinker. The minimal surface and the zero scalar curvature surfaces have the
scaling invariant, and so does the homothetic soliton. Huisken and Ilmanen [6] proved existence
of several rotationally symmetric homothetic solitons were introduced from a dynamical system
using phase-plane analysis. Drugan, Lee and Wheeler [3] proved the followings:

Figure 5. Self-expanding solutions of inverse mean curvature flow

(1) A closed homohtetic soliton for IMCF is a round hypersphere with C = 1
n
.

(2) They classified one-dimensional homothetic solitons.
(3) They constructed topological hypercylinder homothetic solitons that are infinite bottles

for C = 1
n−1

.

Hui [5] proved the existence of a unique even solution (x, y(x)) of the rotationally symmet-
ric homothetic soliton for C > 1

n−1
was obtained. We consider an n-dimensional rotationally

symmetric hypersurface for the IMCF, namely, X : I × Sn−1 → Rn+1 parametrized by

X(s, φ1, · · · , φn−1) = (x(s)Φ(φ1, · · · , φn−1), y(s)),

12



Figure 6. An infinite bottle.

Figure 7. The even solution for C > 1
n−1

where Φ is an orthogonal parametrization of the (n − 1)-dimensional unit sphere. The pro-
file curve γ(s) = (x(s), y(s)) on Q = {(x, y) ∈ R2 | x ≥ 0} satisfies the following ordinary
differential equation:

− 1

C
+

1

x
(xy′ − yx′)(y′(n− 1− xx′′) + xx′y′′) = 0, (1)

for some nonzero constant C. We define a coordinate transformation used in [1] by taking a
suitable parameter s (−∞ < s <∞) as follows:

tan(a) =
y′

x′
and tan(b) =

y

x
. (2)

Changing the coordinates in the equation (1) and multiplying by 2C cos(b)b′, we obtain

Aa′ +Bb′ = 0,

where

A = 2C cos(b) sin2(a− b),
B = (C(n− 1)− 2) cos(b)− C(n− 1) cos(2a− b).

We define an associated vector field

V (a, b) = (V1(a, b), V2(a, b)) = (a′, b′) = (B,−A).

From the dynamical system, we can completely classify all solutions to be rotationally sym-
metric homothetic solitons for IMCF as follows:

Theorem 2.2. There are no complete proper homothetic solitons for 0 < C < 1
n

in Rn+1.

Proof. Suppose that M is such homothetic soliton. We take the sphere centered the origin
with sufficiently small enough radius r so that is disjointed with M . If the radius r increases,
then there is a first touching point.

13



2 4 6 8 10

-10

-5

5

10

2 4 6 8 10

-10

-5

5

10

2 4 6 8 10

-10

-5

5

10

Figure 8. Case 1. C > 1
n−1

: Integral curves and profile curves for n = 5.
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Figure 9. Case 1. C > 1
n−1

and Case 2. C = 1
n−1

.
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Figure 10. Case 3. 1
n
< C < 1

n−1
and Case 4. C = 1

n
.

M

O

A first touching point

We define the function f(x) = ‖x‖2 on M so that

4‖x‖2 = 2

(
n− 1

C

)
< 0.
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By maximum principle, the minimum value of f does not on the interior of M . The function
f has the minimum value at p, which is a contradiction. �

Theorem 2.3. Let M be an n-dimensional complete hypersurface M . Suppose that M is a
homothetic soliton with n − 1

C
= α ≥ 0. Then, there exists a positive constant c = c(α) such

that

crα ≤ Vol(B(r) ∩M),

where B(r) is the (n+ 1)-dimensional ball centered at the origin of the radius r > r1 for some
r1 > dist(0,M).

dist(O,M)r
B(r)

O

M

Proof. By direct computation, we have

4‖x‖2 = 2

(
n− 1

C

)
= 2α ≥ 0. (3)

By the divergence theorem, the equation (3) implies that

2αVol(M ∩B(r)) =

∫
M∩B(r)

4‖x‖2 =

∫
∂(M∩B(r))

〈
∇‖x‖2, η

〉
,

where η is the outward unit normal vector of ∂(M ∩B(r)). By the Cauchy-Schwarz inequality,
we obtain ∫

∂(M∩B(r))

〈
∇‖x‖2, η

〉
=

∫
∂(M∩B(r))

2
〈
x>, η

〉
=

∫
∂(M∩B(r))

2〈x, η〉

≤
∫
∂(M∩B(r))

2‖x‖ = 2rVol(∂(M ∩B(r))).

From the coarea formula, we obtain

αVol(M ∩B(r)) ≤ rVol(∂(M ∩B(r))) ≤ r

(
d

dr
Vol(M ∩B(r))

)
.

That implies that

0 ≤ α

r
≤ 1

Vol(M ∩B(r))

(
d

dr
Vol(M ∩B(r))

)
. (4)

Integrating to both sides of the inequality, we have

crα ≤ Vol(M ∩B(r))).

where c is a constant depending on α. If α > 0, then Vol(M) diverges by letting r →∞. �
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2.2. Translating soliton for IMCF.

Definition 2.4 (Translating soliton for IMCF). The hypersurface Σ is called a translating
soliton for IMCF if there exists a non-zero constant vector field v satisfying

〈
−→
H, v〉 = −1,

where v is the direction of translation under the IMCF and it is called the translating direction.

The translating solitons are solutions {Σt = Σ + vt} satisfying the IMCF equation. We may
assume that v is en+1 up to rescaling and rotation in Rn+1. Drugan, Lee and Wheeler [3] proved
the followings:

(1) The only one-dimentional translating soliton is a cycloid.
(2) They introduced the one-parameter family of translating solitons as a combination of

rotation and scaling of the cycloid cylinder.

Figure 11. The cycloid and cycloid cylinders.

Theorem 2.5 (Kim and Pyo [7]). The only ruled translating solitons for IMCF are cycloid
cylinders.

We consider an n-dimensional rotationally symmetric hypersurface, namely, X : I×Sn−1 →
Rn+1 parametrized by

X(s, φ1, · · · , φn−1) = (x(s)Φ(φ1, · · · , φn−1), y(s)),

where Φ is an orthogonal parametrization of the (n− 1)-dimensional unit sphere.
The profile curve γ(s) = (x(s), y(s)) on Q = {(x, y) ∈ R2 | x ≥ 0} satisfies the following

equivalent ordinary differential equation:

(n− 1)x′y′ + x(x′(y′′x′ − y′x′′) + 1) = 0.

We define an appropriate coordinate transformation as follows:

tan(a) =
y′

x′
, tan(b) = x. (5)

Using the coordinate transformation and multiplying it by cos4(b)b′, we obtain

Aa′ −Bb′ = 0,

where

A = cos2(a) sin2(b) cos2(b)
(
h2 cos2(b) + sin2(b)

)
,

B = − sin(b)(sin(a) cos(a) cos(b) + sin(b))
(
2h2 cos2(a) cos2(b) + sin2(b)

)
−h4 cos4(a) cos4(b).

We define an associated vector field

V (a, b) = (V1(a, b), V2(a, b)) = (a′, b′) = (B,A).

From the dynamical system, we can completely classify all solutions to be rotationally sym-
metric translating solitons for IMCF as follows:
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Figure 12. Rotationally symmetric translating solitons.
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GENERALIZED KILIING CONDITION OF SYMMETRIC OPERATORS
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In 20th century, classifications with certain geometric problems for real hypersurfaces in
spaces of complex space form or quaternionic space form were main research subjects in the
field of differential geometry ([16], [17], [18]). Recently, many kinds of geometric problems have
been considered on the classification of real hypersurfaces in the complex two-plane Grassmanni-
ans G2(Cm+2) = SUm+2/S(U2·Um) or complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um)

(see [1], [2], [4], [20], [22], [23], [26], [28], and [29]).

More generally, real hypersurfaces in Hermitian symmetric spaces with shape operator have
been investigated by Berndt and Suh [1], [2], [3] and [4], Martinez and Pérez [16], Pérez and Suh
[19] and [21].

In this paper, we want to apply this notion of Killing tensor to the structure Jacobi operator
Rξ which is a symmetric tensor field of type (0,2) on a Riemannian manifold (M, g). It is defined
by

Rξ(X,Y ) = g(RξX,Y )

for the structure Jacobi operator Rξ of type (1,1) and any vector fields X and Y on (M, g). The
symmetric structure Jacobi operator Rξ of type (0,2) on a Riemannian manifold M is said to
be generalized Killing if it satisfies

(∇XRξ) (X,X) = g ((∇XRξ)X,X) = 0

for any vector field X ∈ TzM , z ∈ M . This equation is equivalent to cyclic parallel structure
Jacobi operator

SX,Y,Z (∇XRξ) (Y,Z) = SX,Y,Zg ((∇XRξ)Y, Z) = 0

for any X,Y and Z ∈ TzM , z ∈ M , because of polarization, where SX,Y,Z denotes the cyclic
sum with respect to the vector fields X,Y and Z. That is, the condition of generalized Killing
structure Jacobi operator Rξ of M implies

g ((∇XRξ)X,X) = 0

⇐⇒ g ((∇XRξ)Y,Z) + g ((∇YRξ)Z,X) + g ((∇ZRξ)X,Y ) = 0

⇐⇒ SX,Y,Zg ((∇XRξ)Y,Z) = 0.

(6)

Here, we can give the geometric meaning of the generalized Killing structure Jacobi operator as
follows: When we consider a geodesic γ with initial conditions such that γ(0) = z and γ̇(0) = X.
Then the structure Jacobi curvature Rξ(γ̇, γ̇) = g(Rξγ̇, γ̇) is constant along the geodesic γ of the
vector field X (see Semmelmann [24]).
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Now, in this paper we consider a real hypersurface M in complex hyperbolic two-plane
Grassmanians SU2,m/S (U2 · Um) with generalized Killing structure Jacobi operator.

From such a view point, in a direction of generalized Killing structure Jacobi operator
for real hypersurfaces in G2(Cm+2) we gave an important result. In fact, recently, for a real
hypersurface in G2(Cm+2) with Killing structure Jacobi operator Lee, Suh, and Woo [15] gave a
classification theorem as follows:

Theorem B. Let M be a Hopf real hypersurface in complex two-plane Grassmannians G2(Cm+2), m ≥ 3.
Then the structure Jacobi operator Rξ of M is generalized Killing if and only if M is locally congruent to an
open part of a tube of r = π

4
√

2
around a totally geodesic G2(Cm+1) in G2(Cm+2).

On the other hand, a real hypersurface M in SU2,m/S(U2 · Um) is said to be Hopf if the shape
operator A of M satisfies Aξ = αξ, α = g(Aξ, ξ), for the Reeb vector feld ξ = −JN , where N denotes
a unit normal vector field on M .

Motivated by this result, it is natural to consider a generalized Killing structure Jacobi
operator for real hypersurfaces M in SU2,m/S(U2 · Um). In this paper, we want to consider a new
notion of the generalized Killing structure Jacobi operator Rξ of M in SU2,m/S(U2 · Um) defined
by

SX,Y,Zg ((∇XRξ)Y, Z) = 0 (*)

for any tangent vector fields X, Y , and Z on M . Then we can assert the following

Main Theorem. There does not exist a connected Hopf real hypersurface in complex hyperbolic two-plane
Grassmannians SU2,m/S(U2 · Um), m ≥ 3, with generalized Killing structure Jacobi operator.

As mentioned above, the notion of Killing symmetric tensor is a kind of generalized notion
of parallelism and can be regarded as the symmetric tensor of a Riemannian manifold. It means
that if the symmetric tensor T is parallel, that is, ∇T = 0, then T can be generalized Killing.
If we apply such a relation to the structure Jacobi operator Rξ for a real hypersurface M in
SU2,m/S(U2 · Um), m ≥ 3, we can give the following result from our Main Theorem.

Corollary. There does not exist a connected Hopf real hypersurface in complex hyperbolic two-plane
Grassmannians SU2,m/S(U2 · Um), m ≥ 3, with parallel structure Jacobi operator.

1. Key lemma

Let SU2,m/S(U2 · Um) and M be a complex hyperbolic two-plane Grassmannian and its Hopf
real hypersurface such that Aξ = αξ, respectively. Hereafter, unless otherwise stated, we consider
that X and Y are any tangent vector fields on M . The structure Jacobi operator Rξ of M in
SU2,m/S(U2 · Um) is given by

Rξ(X) = R(X, ξ)ξ

= −1

2

[
X − η(X)ξ −

3∑
ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

}
−

3∑
ν=1

{
3g(φνX, ξ)φνK + ην(ξ)φνPX

}]
+ αAX − η(AX)Aξ,

where the function α is defined by α = g(Aξ, ξ) and said to be the Reeb function on M (see [30]).
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We can rearrange the generalized Killing structure Jacobi operator as follows:

0 =g(φAX, Y )ξ + η(Y )φAX

+ 2η((∇XA)ξ)AY + 2α(∇XA)Y − 2αη((∇XA)Y )ξ − 2αg(AY, φAX)ξ

− 2αη(Y )(∇XA)ξ − 2αη(Y )AφAX + g(φAY,X)ξ + η(X)φAY

+ 2η((∇YA)ξ)AX + 2α(∇YA)X − 2αη((∇YA)X)ξ − 2αg(AX,φAY )ξ

− 2αη(X)(∇YA)ξ − 2αη(X)AφAY − η(Y )AφX − η(X)AφY

+ 2(ξα)g(AX,Y )ξ − 4(ξα)g(AX,Y )

3∑
ν=1

ην(ξ)φξν + 2α(∇XA)Y

− αη(X)φY − αg(φX, Y )ξ − 2αη(Y )φX − 4α(ξα)η(X)η(Y )ξ

+ 2αη(Y )AφAX + 2αη(X)AφAY

+

3∑
ν=1

[
g(φνAX,Y )ξν − 2η(Y )ην(φAX)ξν + ην(Y )φνAX

+ 3g(φνAX,φY )φνξ + 3η(Y )ην(AX)φνξ + 3ην(φY )φνφAX

− 3αην(φY )η(X)ξν + 4ην(ξ)ην(φY )AX

− 4ην(ξ)g(AX,Y )φνξ + 2ην(φAX)φνφY
]

+

3∑
ν=1

[
g(φνAY,X)ξν − 2η(X)ην(φAY )ξν + ην(X)φνAY

+ 3g(φνAY, φX)φνξ + 3η(X)ην(AY )φνξ + 3ην(φX)φνφAY

− 3αην(φX)η(Y )ξν + 4ην(ξ)ην(φX)AY

− 4ην(ξ)g(AY,X)φνξ + 2ην(φAY )φνφX
]

+

3∑
ν=1

[
− ην(Y )AφνX + 2η(X)ην(Y )Aφξν − ην(X)AφνY

+ 3ην(φY )AφνφX − 3η(X)ην(φY )Aξν + 3ην(φX)AφφνY

− 3αην(φX)ην(Y )ξ + 4ην(ξ)ην(φX)AY

+ 4ην(ξ)ην(φY )AX − 2g(φνφX, Y )Aφξν
]

(4.1)

+ α

3∑
ν=1

[
− ην(X)φνY − g(φνX,Y )ξν − 2ην(Y )φνX

+ ην(φX)φφνY + g(φνφX, Y )φξν + 4η(X)η(Y )ην(ξ)φξν

− η(X)ην(Y )φξν − ην(φX)ην(Y )ξ − 4η(X)ην(ξ)ην(φY )ξ
]
.

Then by virtue of (4.1), we can prove the following:

Lemma 1.1. Let M be a Hopf real hypersurface in the complex hyperbolic two-plane Grassmannian SU2,m/S(U2·
Um), m ≥ 3, with generalized Killing structure Jacobi operator. Then the Reeb vector field ξ belongs to either
the maximal quaternionic subbundle Q or its orthogonal complement Q⊥.

2. The Reeb vector field ξ ∈ Q⊥

Let M be a Hopf hypersurface in SU2,m/S(U2 · Um) with generalized Killing structure Jacobi
operator. Then by Lemma 1.1 we shall make an investigation into two cases depending on ξ

belongs to either distribution Q⊥ or distribution Q, respectively. So, in this section let us consider
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the case ξ ∈ Q⊥ (i.e., JN ∈ JN where N is a unit normal vector field on M in SU2,m/S(U2 · Um)).
Since Q⊥ = span{ξ1, ξ2, ξ3}, we may put ξ = ξ1. By using this equation we obtain:

Lemma 2.1. Let M be a Hopf hypersurface in SU2,m/S(U2 · Um), m ≥ 3 and ξ ∈ Q⊥, then

(i) φAX = 2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX and
(ii) AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 +Aφ1X.

From now on, by using this lemma, let us consider our classification problem with respect
to the notion of generalized Killing structure Jacobi operator of a real hypersurface with ξ ∈ Q⊥

in complex hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um), m ≥ 3.

We have
2(∇ξRξ)X = 2(ξα)AX + 2α(∇ξA)X − 4α(ξα)η(X)ξ

− 4α

3∑
ν=1

{
ην(φX)ξν − ην(X)φνξ

}
+ 4α

3∑
ν=1

{
ην(ξ)ην(φX)ξ − ην(ξ)η(X)φνξ

} (5.1)

for any tangent vector field X on M .

On the other hand, we also have

2(∇XRξ)ξ = φAX − 2αAφAX

−
3∑

ν=1

{
g(φνAX, ξ)ξν − ην(ξ)φνAX

}
+

3∑
ν=1

{
3ην(AX)φνξ − 8ην(ξ)g(AX, ξ)φνξ

}
.

(5.2)

By using these equations, we assert:

Lemma 2.2. Let M be a real hypersurface in SU2,m/S(U2 · Um), m ≥ 3 with generalized Killing structure
Jacobi operator. If the Reeb vector field ξ belongs to the distribution Q⊥, then the shape operator A commutes
with the structure operator φ, that is, Aφ = φA.

In the remained part of this section, by using Proposition A let us check whether the struc-
ture Jacobi operator Rξ on a real hypersurface MA of type T ∗A (or H∗A, resp.) satisfies generalized
Killing condition. In order to do this, we assume that the structure Jacobi operator Rξ of MA

is generalized Killing.

Then (4.1) can be rewritten as

0 = (2 + 2α2)φAX − (2 + 2α2)AφX

− αφX + αφ1X + 2αη2(X)ξ3 − 2αη3(X)ξ2
(5.3)

for any tangent vector field X on TzMA, z ∈MA.

Putting X = ξ2 ∈ Tβ in (5.3) gives

4αξ3 = 0. (5.4)

Bearing in mind of Proposition A, we know that the Reeb function α is non-vanishing. From
this fact, (5.4) gives ξ3 = 0, which gives a contradiction.

3. The Reeb vector field ξ ∈ Q

Due to Lemma 1.1, let us suppose that ξ ∈ Q (i.e., JN ⊥ JN) in this section. Related to this
condition, Suh [25] proved:
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Theorem C. LetM be a Hopf hypersurface in complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um),
m ≥ 3, with the Reeb vector field belonging to the maximal quaternionic subbundle Q. Then one of the following
statements holds

(T ∗B) M is an open part of a tube around a totally geodesic HHn in SU2,2n/S(U2U2n), m = 2n,
(H∗B) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at infinity is singular and of type

JN ⊥ JN , or
(E) The normal bundle νM of M consists of singular tangent vectors of type JX ⊥ JX.

By virtue of this result, we assert that a real hypersurface M in SU2,m/S(U2 · Um) satisfying the

hypotheses in our main theorem is locally congruent to an open part of one of the model spaces mentioned in

above Theorem C. Hereafter, unless otherwise stated, such real hypersurfaces of type of T ∗B , H∗B,
and E in SU2,m/S(U2 · Um) are denoted by MB.

If we put X = ξ1 ∈ Tβ in (4.1) and take the inner product with φ1ξ, then we have

4β(1 + α2) = 0. (6.1)

On the other hand, putting X = φ1ξ ∈ Tγ in (??) yields

βξ1 + 3αξ1 − 3(3α+ β)ξ1 = 0,

where we have used Aφ1ξ = 0 and φ2ξ1 = −ξ1. Since ξ1 is unit, this implies β = −3α. Substituting
this fact into (6.1) gives

−12α(1 + α2) = 0.

Since it is known that the Reeb function α in Proposition B is non-vanishing, this implies a
contradiction.

For a model space of T ∗B , it is known that the principal curvatures α and β are given by
α = tanh(

√
2r) and β = coth(

√
2r). Substituting these ones into (6.1), we have

tanh2(
√

2r) + 1 = 0, (6.2)

which gives us a contradiction.

Also in the case of real hypersurfaces MB of type H∗B or E, since α =
√

2 and β =
√

2, (6.1)

becomes 0 = 2
√

2. Thus we also have a contradiction.

This shows that real hypersurfaces MB of types T ∗B , HB∗ or E cannot satisfy the condition
of generalized Killing structure Jacobi operator, and therefore our Main Theorem for the case
ξ ∈ Q can not be occurred.

Summing up these observations, we assert that the structure Jacobi operator Rξ of real
hypersurfaces of five types model spaces T ∗A , H∗A, T ∗B , H∗B or E in complex hyperbolic two-plane
Grassmannians SU2,m/S(U2 · Um), m ≥ 3, does not satisfy such a notion of generalized Killing.
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[17] K. Panagiotidou and J.D. Pérez, On the Lie derivative of real hypersurfaces in CP 2 and CH2 with respect

to the generalized Tanaka-Webster connection, Bull. Korean Math. Soc. 52 (2015), 1621–1630.
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[22] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J.

Korean Math. Soc. 44 (2007), 211-235.
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LEGENDRIANS, LAGRANGIAN FILLINGS, AND CLUSTER STRUCTURES

YOUNGJIN BAE

Department of Mathematics, Incheon National University, Korea

Abstract. The basic concepts relating Legendrians, and Lagrangians will be introduced. After
that we briefly review known Legendrian invariants in several context, and discuss how cluster
structure appears when we consider the space of Lagrangian fillings of a given Legendrian.

1. Introduction and preliminaries

Let us start with the basic notions of symplectic and contact geometry. A symplectic manifold

(W,ω) consists of W is a 2n-dimensional manifold;

ω ∈ Ω2(W ) satisfying dw = 0, ω∧n is nowhere vanishing.

In the symplectic manifold there is an important class of submanifold so called Lagrangian

submanifold. More precisely, L is a Lagrangian submanifold in a symplectic manifold (W,ω) if and
only if L is an n-dimensional submanifold;

ω|TL ≡ 0.

Example 1.1. The main example of symplectic manifold is the cotangent bundle T ∗M of a n-dimensional
manifold M equipped with the standard symplectic form ωstd =

∑n
i=1 dpi ∧ dqi, where {qi}ni=1 are coordinates

for the base manifold M and the {pi}ni=1 for the fiber direction.
Typical examples of Lagrangian submanifolds in (T ∗M,ωstd) are the zero section oM and the cofiber T ∗pM

at a fixed point p ∈M .

There is an odd-dimensional analogue of symplectic manifolds, so called, a contact manifold.
A contact manifold (Y, kerα) consist ofY is a (2n− 1)-dimensional manifold;

α ∈ Ω1(Y ) satisfying that α ∧ dα∧n−1 is nowhere vanishing.

Also, there is an analogous concept of Lagrangians in symplectic manifold, named, Legen-
drian submanifold. A submanifold Λ in a contact manifold (Y, kerα) is called Legendrian ifΛ is (n− 1)-dimensional;

α|TΛ ≡ 0.

Example 1.2. The contact and Legendrian manifolds naturally appear at the boundary of symplectic
and Lagrangian manifolds, respectively. The unit cotangent bundle ST ∗M with the canonical one-form λcan =∑n
i=1 pidqi gives a contact manifold. The unit co-sphere bundle ST ∗pM becomes a Legendrian submanifold in

(ST ∗M, ξ = kerλ).

29



2. Legendrian knots in (R3, ξstd) and their invanriants

Darboux’s theorem in contact geometry says that every contact manifold (Y, kerα) locally
contactomorphic to (R2n+1, ker(dz −

∑n
i=1 yidxi)). Especially when the contact manifold is three-

dimensional, we have the standard local model(
R3, ξstd = ker(dz − ydx)

)
.

In that standard space a one-dimensional Legendrian, i.e., a Legendrian knot Λ : S1 → (R3, ξstd)

satisfies

y(t) =
ż(t)

ẋ(t)
.

By the Legendrian condition it is enough to know two coordinates among three coordinates.
There are two famous and meaningful projections, the front and Lagrangian projection:

πF : R3 → R2 : (x, y, z) 7→ (x, z);

πL : R3 → R2 : (x, y, z) 7→ (x, y).

πxz πxy

We are interested in equivalence classes of Legendrian knots under Legendrian isotopy, which
means smooth isotopy through Legendrian knots. This Legendrian isotopy can be interpreted
as Reidemeister moves I, II, and, III in the front projection as depicted in Figure 13.

Figure 13. Reidemeister moves in the front projection

Here is the list of some Legendrian invariants:

(1) knot type;
(2) Thurston-Bennequin number;
(3) rotation number;
(4) ruling invariant;
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(5) Legendrian contact algebra;
(6) augmentation category;
(7) constructible sheaf theoretic invariant;

Among the items (1), (2), and (3) are called classical invariants which can be determined by
topology and contact homotopy data. Especially (2) and (3) can be computed in a combinatorial
way in terms of the front projection:

tb(Λ) =#
{

,
}
−#

{
, ,

}
;

rot(Λ) =
1

2

(
#{ , } −#{ , }

)
.

Briefly speaking, ruling invariant comes from a family of functions

{Fx : RN → Rz}x∈R

whose critical locus recovers the front projection of Legendrian knot. The above family of
functions is called a generating family. There is a combinatorial way to encode the paring of the
critical points for each Fx in a consistent way with respect to the x-coordinate, which is nothing
but the ruling. A certain weighted counting of the ruling gives a polynomial invariant.

On the other hand, there is an alternative way of extracting Legendrian invariant by using
J-holomorphic curve respecting a symplectic-Lagrangain pair

(R3 × R, d(etλ),Λ× R).

As a result, we obtain a differential graded algebra, whose generators are integral curves from
the Legendrian to itself following the canonical vector field obtain from the contact 1-from.

The remaining items (6) and (7) is deeply related to each other and their (geometric)
motivation is to consider the space of Lagrangian fillings of a Legendrian knot.

Let us depict an example of Lagrangian filling in (R3 × R, d(etλ)) especially for the case of
Legendrian trefoil of maximal Thurston-Bennequin number as follows:

∅

1 2 3

]

Figure 14. An exact Lagrangian filling for the Legendrian trefoil

Topological type of the filling is a torus with one puncture. If we restrict the topological
type of the filling there are several inequivalent (exact) Lagrangian fillings up to Hamiltonian
isotopy. This can be distinguished by using J-holomorphic curve theory, and constructible sheaf
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theory, independently. In the Legendrian trefoil case, there are at least five distinct fillings by
considering different sequence of resolution of labelled crossings 1, 2, and 3 in Figure 14.

More interesting point is the relation and structure of those Lagrangian fillings as follows:

(3, 1, 2) = (••)(••) = (1, 3, 2)

(3, 2, 1) = •(•(••))

(2, 3, 1) = •((••)•) (2, 1, 3) = (•(••))•

(1, 2, 3) = ((••)•)•

••(••)

•(•••)

•(••)•

(•••)•

(••)••

x1 y1 y1y2=x1+1x1y3=x3+1
x3=y1

x1

y2
y3

x3

x2

y3

x2

y2

x1x2=y2+1x2x3=y3+1

y2y3=x2+1

Figure 15. Cluster structure of A2 type

Surprisingly, this structure is identical to the cluster structure of type A2 in Figure 15. This
phenomena is already extended to (2, n)-torus links and the cluster structure of type An−1. On
the other hand, the cluster structure is deeply related to the theory of (plane curve) singularities
as well as Dynkin diagrams. A conjecture says that this phenomenon also hold for the case of
singularities of ADE-type (as well as BCFG-type).
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RATIONAL CURVES IN DEL-PEZZO VARIETIES

KIRYONG CHUNG

Department of Mathematics Education, Kyungpook National University, Korea

Abstract. By the classification of smooth Fano 3-folds, the varieties P3, Q3, V5 and V22 are
all of Fano 3-folds X with Pic(X) = Z and H3(X) = 0. We review the geometry of moduli
spaces of rational curves in the Fano variety with degree d ≤ 3.

1. Introduction

Rational curves in Fano varieties have played useful roles in algebraic geometry as in
the works of Clemens-Griffiths, Iskovski, Beauville-Donagai, Lehn-Lehn-Sorger-van Straten,
Takkagi-Zucconi and Iliev-Manivel. Understanding the birational geometry of the moduli spaces
of rational curves in a Fano variety may lead us to interesting examples of new varieties or may
reveal some internal structure of Fano varieties ([CS09]). The purpose of this paper review the
konwn result of the geometry of moduli spaces of rational curves of degree ≤ 3 in Fano 3-folds

P3, Q3, V5, and V22

Note taht all of varieties are rigid except V22. The moduli of V22’s is six-dimensional.
Let us introduce the well-known compactifications of rational curves space. Let X ⊂ Pr be a

smooth projective variety with fixed ample line bundle OX(1). Let Rd(X) be the space of rational
curves of fixed embedded degree d ≥ 1.

• Hilbert compactification: Grothendieck’s general construction gives us the Hilbert scheme
Hilbdt+1(X) of closed subschemes of X with Hilbert polynomial h(t) = dt+1 as a closed subscheme
of Hilbdt+1(Pr). The closure Hd(X) of Rd(X) in Hilbdt+1(X) is a compactification which we call the
Hilbert compactification.

• Kontsevich compactification: A stable map is a morphism of a connected nodal curve f : C → X

with finite automorphism group. Here two maps f : C → X and f ′ : C ′ → X are isomorphic if
there exists an isomorphism η : C → C ′ satisfying f ′ ◦ η = f . The moduli space M0(X, d) of
isomorphism classes of stable maps f : C → X with arithmetic genus 0 and deg(f∗OX(1)) = d has
a projective coarse moduli space. The closure Md(X) of Rd(X) in M0(X, d) is a compactification,
called the Kontsevich compactification.

• Simpson compactification: A coherent sheaf E on X is pure if any nonzero subsheaf of E has
the same dimensional support as E. A pure sheaf E is called semistable if

χ(E(t))

r(E)
≤ χ(E′′(t))

r(E′′)
for t >> 0

for any nontrivial pure quotient sheaf E′′ of the same dimension, where r(E) denotes the leading
coefficient of the Hilbert polynomial χ(E(t)) = χ(E ⊗ OX(t)). We obtain stability if ≤ is replaced
by <. If we replace the quotient sheaves E′′ by subsheaves E′ and reverse the inequality, we
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obtain an equivalent definition of (semi)stability. There is a projective moduli scheme SimpP (X)

of semistable sheaves on X of a given Hilbert polynomial P . If C is a smooth rational curve in
X, then the structure sheaf OC is a stable sheaf on X. The closure Pd(X) of Rd(X) in Simpdt+1(X)

is a compactification called the Simpson compactification.

2. Rational curves in homogenous varieties

In [Kie07, CK11, CHK12], the authors investigated the birational geometry of compactified
moduli spaces of rational curves of degree ≤ 3 in homogeneous varieties.

2.1. Rational curves in P3. The cases d ≤ 2 has been well-known for experts. The degree 3

case has investigated by using the geometric invariant theoretic quotient ([Tha96, DH98]) and
the elementary modification of sheaves ([HL10]).

Theorem 2.1. [CHK12, Section 4] Let X be a projective homogenous variety satisfying certain condition
in [CHK12, Lemma 2.1].

(1) H3(X) is the smooth blow-up of P3(X) along the locus ∆(X) of planar stable sheaves.
(2) P3(X) is obtained from M3(X) by three weighted blow-ups followed by three weighted blow-downs. In

other words, P3(X) is obtained from M3(X) by blowing up along Γ1
0, Γ2

1, Γ3
2 and then blowing down

along Γ2
3, Γ3

4, Γ1
5 where Γji is the proper transform of Γji−1 if Γji−1 is not the blow-up/-down center and

the image/preimage of Γji−1 otherwise. Here Γ1
0 is the locus of stable maps whose images are lines; Γ2

0

is the locus of stable maps whose images consist of two lines; Γ3
1 is the subvariety of the exceptional

divisor Γ1
1 which is a fiber bundle over Γ1

0 with fibers

PHom1(C2,Ext1
X(OL,OL(−1))) ∼= P1 × PExt1

X(OL,OL(−1))

where Hom1 denotes the locus of rank 1 homomorphisms.

M3

Γ3
2

}}

Γ2
4

!!
M2

Γ2
1

}}

M4

Γ3
5

!!
M1

Γ1

{{

M5

Γ1
6

  

H3(G)

∆(G)

��
M3(X) M6

∼= // P3(X).

2.2. Rational curves in Q3. Let Q3 be a smooth quadric hypersurface in P4. The most natural
moduli theoretic view point of the variety Q3 is the linear section of Grassmannian variety
Gr(2, 4) under the under Plücker embedding into P(∧2C4) = P5. Furthermore, it is known that Q3

is a homogenous variety and thus we can apply the general result about the homogenous case
studied in [CHK12]. For example, we can apply the main result of [CHK12] for the case d = 2.

Theorem 2.2. The Hilbert scheme H2(Q3) of conics in Q3 is isomorphic to Gr(3, 5). Furthermore, there
exists a blow-up/down digram between H2(Q3) and M2(Q3). In special, the Kontsevich compactification M2(Q3)
is a smooth stack.

3. Rational curves in V5

Let V5 be the intersection of Gr(2, 5) with three hyperplanes in P9 under Plücker embedding.
The Hilbert scheme Hd(V5) of rational curves in of degree d ≤ 3 is isomorphic to the moduli
space of stable sheaves Pd(V5) by the following Lemma.

Lemma 3.1. Hd(V5) ∼= Pd(V5) for d ≤ 3.
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Proof. The case d = 1 or 2 is obvious. Let F ∈ P3(V5) be a stable sheaf. By Corollary 1.39 in [San14],
F = OC for some locally CM-curve C ⊂ Y with Hilbert polynomial 3m+ 1. Hence the natural map

H3(V5)→ P3(V5), IC 7→ OC

is an isomorphism. �

Thus we have a explicit description of the moduli space Pd(V5).

Proposition 3.2 ([Fae05, FN89, Ili94, San14]). P1(V5) ∼= P2, P2(V5) ∼= P4, P3(V5) ∼= Gr(2, 5).

For each d, the universal sheaves of Pd(V5) was explicitly presented in [San14, Proposition 2.20,

Proposition 2.32, Proposition 2.46]. In the view point of birational geometry, we have

Theorem 3.3. [Chu19] Let

Ψ : P3(V5) 99KM3(V5)

be the natural birational map. Then,

(1) the undefined locus of ΨI is Bs(Ψ) = Θ2.

(2) The map Ψ extends to a birational regular morphism Ψ̃ by the two times blow-ups of P3(V5) along
Θ1 followed by the strict transform of Θ2.

(3) The two times blown-up space of P3(V5) has at most finite group quotient singularity.

M3(V5)

strict trans. of Θ2

��
Ψ̃

��

M4(V5)

Θ1

��
P3(V5)

Ψ // M3(V5).

3.1. Moduli space of stable maps in Y . Let M(Y, d) be the moduli space of stable maps with
degree d and genus 0. By the work in [Chu19, CY19],

Proposition 3.4.

M(Y, 1) ∼= M1 = P2.

For d = 2, 3,

M(Y, d) = M(Y, d)prin ∪M(Y, d)L.

Here M(Y, d)prin is the closure of the locus of stable maps whose image is smooth rational curves of degree d and

M(Y, d)L is the projective bundle over M1 with fiber M(P1, d). Furthermore, there exists a birational contraction

Φd : M(Y, d)prin →Md

where

(1) Φ2 is a smooth blow-up along the locus of double lines (which is isomorphic to a conic in M2
∼= P2)

(2) and Φ3 is the rational composition of two-times weighted blow-up followed by a small contraction along
geometric meaningful centers.

4. Rational curves in V22

The Fano variety V22 can be described by three different ways: Isotropic Grassmannian variety,
Moduli space of twisted cubics in P3 and the Hilbert scheme of points on the dual plane P2∗.
The first (resp. third) two ones is useful for the line and conic (resp. twisted cubics) in V22.
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4.1. The variety of type V22 via Isotropic Grassmannian variety.

Definition 4.1. Let dimV = 7 and dimN = 3. Let σ : N → ∧2V ∗ be a fixed injective (general) alternating
form. Let us define by

V22 = {[W ] ∈ Gr(3, V ) | σ(n)(u, v) = 0, ∀u, v ∈W, ∀n ∈ N}.

For example, one can choose the alternating forms:

ω0 := e∗0 ∧ e∗4 + e∗1 ∧ e∗3 − e∗2 ∧ e∗6
ω1 := e∗1 ∧ e∗5 + e∗2 ∧ e∗4 − e∗0 ∧ e∗6
ω2 := e∗0 ∧ e∗2 + e∗3 ∧ e∗5 + e∗4 ∧ e∗6

Remark 4.2. Let ω : C→ ∧2V ∗ be the non-zero alternating form with dimV = n. We define the isotropic
Grassmannian by

Grω(k, n) = {[W ] ∈ Gr(k, n) | ω(1)(u, v) = 0,∀u, v ∈W}.
Then, V22 is the complete intersection

V22 =

2⋂
i=0

Grσ(ni)(3, 7)

of isotropic Grassmannians Grσ(ni)(3, 7) with the general two forms σ(ni) on V .

4.2. Rational curves in the Grassmann Gr(3, 7). Let us denote by S(C1, C2, · · · , Cn) the rational

normal scroll arising from the rational normal curves Ci (allowing Ci to be a point) with fixed
isomorphisms P1 ∼= Cj, 1 ≤ j ≤ n (whenever Ci is not a point). Grothendieck’s theorem says
that any vector bundle on the projective line P1 splits into the direct sum of line bundles. If
f : P1 → Gr(3, 7) is a morphism of degree d, the pullback of the (dual) universal bundle gives a
surjective homomorphism

ϕ : O⊕7
P1 → OP1(d1)⊕OP1(d2)⊕OP1(d3)

over P1 with d = d1 + d2 + d3, d1 ≤ d2 ≤ d3.

• When d = 1, we have d1 = d2 = 0 and d3 = 1. The composition π ◦ ϕ : O⊕7 → O of ϕ
with the projection onto the first (second) factor is surjective and gives us the point
p1, p2 ∈ P6 while that with the second projection π ◦ ϕ gives a line in P6. Thus, a line in
Gr(3, 7) parameterizes the 2-dimensional planes H in P6 passing through p1, p2 as varying
the points p ∈ l.

• When d = 2, we have (d1, d2, d3) = (0, 1, 1) or (0, 0, 2). In the first case, π1 ◦ ϕ gives a point
p while π2 ◦ ϕ and π3 ◦ ϕ give lines l, l′. In the second case, both π1 ◦ ϕ and π2 ◦ ϕ give us
points while the third one gives us a conic C in P6. Hence, the general conics in Gr(3, 7)

parameterizes planes passing through three points p, q, φ(q) such that q ∈ l, φ(q) ∈ l′

for the induced isomorphism φ : l ∼= l′. That is, the conic parameterizes the variety of
2-dimensional planes of ruling of the scroll S(p, l, l′).

• When d = 3, we have (d1, d2, d3) = (1, 1, 1) or (0, 1, 2) or (0, 0, 3). In the first case, the
projections give us three lines l, l′, l′′ in P6 of general position. That is, the twisted
cubics parameterizes the variety of 2-dimensional planes of ruling of the scroll S(l, l′, l′′).

For the case d = 2, the general degree 2 map f : P1 → Gr(3, 7) associates to the point p which is
the intersection of planes presenting the value f(x) for all x ∈ P1 and P4 which is the union of
planes presenting the value f(x) for all x ∈ P1. Hence we have a map into the partial flag variety
Fl(1, 5, 7) as follows.

R2(Gr(3, 7)) 99K Fl(1, 5, 7), [f ] 7→ [(p,P4)], p ∈ P4.

This observation is the key point of description of M2(V22) ([She10, Appendix A]).
For the case d = 3, the variety S(l, l′, l′′) is called by a Segre 3-fold where the linear spanning

of S(l, l′, l′′) is a P5 = 〈S(l, l′, l′′)〉 in P6. Note that each Segre 3-fold can be obtained by orbits of
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the automoprhism group PGL(6) of P5. On the other hand, the Segre 3-fold in P5 can be defined
as the image of the embedding

Σ := P1 × P2 |O(1,1)|−→ P2

given by the complete linear system |O(1, 1)|. The defining equations of the image
√
−1(Σ) is

given by

rank

(
x0 x1 x2

x3 x4 x5

)
≤ 1

up to the projective motion. Here [x0 : x1 : x2 : · · · : x5] is the homogeneous coordinate of P5.

4.3. Lines and conics on V22.

Proposition 4.3. [KPS18, Proposition 5.4.4] The Hilbert scheme P1(V22) is isomorphic to a singular
quartic plane curve.

Let U and Q be the pull-back of the universal bundles on Gr(3, V ) such that

0→ U → V ⊗OX → Q→ 0.

Note that Hom(U ,Q∗) ∼= N .

Proposition 4.4. The Hilbert scheme of conics on V22 is isomorphic to H2
∼= P(N∗) = P2.

The original description of conics was studied by Mukai (as cited by M. Shen). For the the
detail, see [She10, Appendix A].

4.4. Cubic curves on V22. Twisted cubic curves in V22 has a simple descrption via the Hilbert
scheme of twisted cubics in P3.

Proposition 4.5. [CL20] Let M3 be the moduli space of stable sheaves with the Hilbert polynomial 3m+1.
Then,

(a) M3 is smooth.
(b) M3 is isomorphic to the projective space P(V ∗) ([KS04]).
(c) The locus of stable sheaves supported on lines in V22 is an unique point in P(V ∗).
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SOME INVARIANTS OF PROJECTIVE VARIETIES

WANSEOK LEE

* Department of Applied Mathematics, Pukyong National University, Korea

Abstract. A nondegenerate projective variety X ⊂ PrK is defined by the homogeneous ideal
IX in the homogeneous coordinate ring K[x0, x1, . . . , xr] of PrK. That is, X is the set of common
roots of generators of IX . Classically, it is one of the most fundamental problem in projective
algebraic geometry to understand the relation between geometric properties of X and algebraic
properties of IX . In this short note, I will introduce some projective invariants of projective
varieties related to my research topic.

1. Minimal Free Resolution

For the graded ring S = K[X0, X1, . . . , Xr] = ⊕d∈ZSd, let M = ⊕d∈ZMd be a given nonzero graded
S-module. To explain the number of generators of M and relations between the generators, it is
natural to study the minimal free resolution of M . In this section, we recall “Hilbert Syzygy Theorem”
and some cohomological tools related to the Koszul complex. Consider the minimal graded free
resolution of M :

· · · −→ ⊕jSβi,j (−i− j) ϕi−→ · · · −→ ⊕jSβ1,j (−1− j) ϕ1−→ ⊕jSβ0,j (−j) ϕ0−→M −→ 0

Precisely we prove that the length of the graded minimal free resolution of M is less than or
equal to r+ 1(Hilbert Syzygy Theorem) and also we explain how to compute the Betti number
βi,j (M. Green’s sequence, see Theorem ??).

Lemma 1.1. Let m = (X0, X1, . . . , Xr). Then for S/m ∼= K, we have

βi,j = dimKTori(M,K)i+j

where Tori(M,K)i+j is the (i+ j)-th piece of the graded S-module

Tori(M,K) = Tori(M,K)0 ⊕ Tori(M,K)1 ⊕ Tori(M,K)2 · · · .

Proof. By tensoring the above resolution with S/m ∼= K, we have the following complex

· · · −→ ⊕j∈ZSβi,j (−i− j)⊗K −→ · · · −→ ⊕j∈ZSβ1,j (−1− j)⊗K

ϕ̃1−→ ⊕j∈ZSβ0,j (−j)⊗K
ϕ̃0−→M ⊗K −→ 0

First, note that the boundary map

ϕ̃0 : ⊕j∈ZSβ0,j (−j)⊗K −→M ⊗K
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is the zero map by minimality. For ` ≥ 1, define M` to be the kernel of ϕ`−1 and consider the following diagram:

· · · −→⊕j∈ZSβ`,j (−`− j) ϕ`−−−−→ ⊕j∈ZSβ`−1,j (−`+ 1− j) ϕ`−1−−−−→ · · ·

↘ ↗

M`

↗ ↘

0 0

In the commutative diagram

⊕j∈ZSβ`,j (−`− j)⊗K
ϕ̃`−−−−→ ⊕j∈ZSβ`−1,j (−`+ 1− j)⊗K

φ` ↘ ↗

M` ⊗K

φ` is the zero map by minimality and thus it is shown that ϕ̃` is the zero map for all ` ≥ 0. Therefore

Tor`(M,K) ∼= ⊕j∈ZSβ`,j (−`− j)⊗K.

Since K ∼= S/m, the (i+ j)-th piece of Tori(M,K) is Sβi,j (−i− j)⊗K = Kβi,j . �

Lemma 1.1 says that the graded Betti number of M can be interpreted by the dimension of
graded pieces of Tori(M,K). Recall that since Tori(−,−) is a covariant functor, i.e., Tori(M,K) ∼=
Tori(K,M), we can compute Tori(M,K)i+j by using the well-known Koszul type minimal free
resolution of K ∼= S/m:

0 −→ ∧r+1V ⊗ S(−r − 1) −→ · · · −→ ∧2V ⊗ S(−2) −→ V ⊗ S(−1) −→ S −→ S/m −→ 0

where V is the (r + 1)-dimensional K-vector space generated by X0, X1, . . . , Xr. This complex is
just the “Koszul complex” with respect to the regular system X0, X1, . . . , Xr ∈ m. Above Koszul
complex enables us to prove the following:

Theorem 1.2 (Hilbert Syzygy Theorem). Let M be a finitely generated graded S = K[X0, X1, . . . , Xr]-
module. Then the length of the minimal free resolution of M is ≤ r + 1.

Proof. By Lemma 1.1, it is enough to show that for all i ≥ r + 2,

βi,j = dimKTori(M,K)i+j = 0.

Since the length of the minimal free resolution of K is ≤ r + 1 and since Tori(−,−) is a covariant functor,

Tori(M,K) = Tori(K,M) = 0 for all i ≥ r + 2,

so we have the desired result. �

Now we turn to the geometric cases. For a nonzero coherent sheaf F on Pr, consider the
associated graded S- module

F = ⊕`∈ZH0(Pr,F(`))

and the minimal free resolution

· · · −→ ⊕j∈ZSβi,j (−i− j) −→ · · · −→ ⊕j∈ZSβ1,j (−1− j) −→ ⊕j∈ZSβ0,j (−j) −→ F −→ 0.

By using the Euler sequence

0 −→M := ΩPr (1) −→ V ⊗OPr −→ OPr (1) −→ 0

where V = H0(Pr,OPr (1)), M. Green[G] obtained the following general connection between syzy-
gies and some cohomology groups:
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2. Varieties of minimal degree

Varieties with deg(X) = codim(X) + 1 are called varieties of minimal degree. More than 100 years
ago, they were classified by P.Del Pezzo and E.Bertini as following

• Pr

• quadric hypersurface
• (a cone over) the veronese surface in P5

• (a cone over) rational normal scroll.

A modern proof of this classification can be found in [EH] and [F]. Varieties of minimal
degree are always 2-regular, thus homogeneous ideal IX of X is generated by quadric equations
and satisfies Property Np for all p ≥ 0. Also these varieties are arithmetically Cohen-Macaulay
and their Betti diagrams are well-known as follows;

Lemma 2.1. Let X ⊂ PrK = Proj(S) be a variety of minimal degree. Setting c = codim(X), X has minimal
free resolution of the form

0→ S(−c− 1)βc,1 → S(−c)βc−1,1 → · · · → S(−3)β2,1 → S(−2)β1,1 → IX → 0

where βi,1 = i ·
(
c+1
i+1

)
.

Proof. Since X is arithmetically Cohen-Macaulay, using hyperplane section method in the section 2.4 it
suffices to consider rational normal curve. Let νd : P1 −→ Pd be a rational normal curve of degree d. For given
Euler sequence

0 −→Md −→ V ⊗OP1 −→ OP1(d) −→ 0,

we have the following exact sequence of cohomology groups

∧i+2V ⊗H1(P1,OP1(d(j − 2))) −→ H1(P1,∧i+1Md ⊗OP1(d(j − 1))) −→ H2(P1,∧i+2Md ⊗OP1(d(j − 2))).

Since by serre duality, H1(P1,OP1(d(j − 2))) = 0 for j ≥ 2 and since by dimension counting,
H2(P1,∧i+2Md ⊗OP1(d(j − 2))) = 0. Therefore the Betti number βi,j = h1(P1,∧i+1Md ⊗OP1(d(j − 1))) be
zero for all i and for all j ≥ 2.

Now we shall compute the βi,1. Since νd(P1) is projective normal, βo,1 = 0 and βi,1 = h1(P1,∧i+1Md)
for i ≥ 1. Note that locally free sheaf of rank d on P1 is isomorphic to a direct sum of invertible sheaves, see
Hartshorn’s textbook[Hart], Exercise V.2.6. So we represent Md to the form,

Md = OP1(−1)⊕ · · · ⊕ OP1(−1)︸ ︷︷ ︸
d−times

= (OP1 ⊕ · · · ⊕ OP1)⊗OP1(−1).

Let W = OP1 ⊕ · · · ⊕OP1 as the vector space of dimension d, then ∧i+1Md = ∧i+1W ⊗OP1(−i− 1). Since by
Serre duality, h1(P1,OP1(−i− 1)) = h0(P1,OP1(i− 1)). Therefore

βi,1= h1(P1,∧i+1Md) =h1(P1,∧i+1W ⊗OP1(−i− 1))

=dimK{∧i+1W} · h1(P1,OP1(−i− 1))=
(
d
i+1

)
· h0(P1,OP1(i− 1))

=
(
d
i+1

)
· i .

�

2.1. Rational normal scroll.

Definition 2.2. For 1 ≤ a1 ≤ · · · ≤ an, if E = OP1(a1) ⊕ · · · ⊕ OP1(an), X = P(E), and L = OP(E)(1),

H0(X,L) = H0(P1, E) = a1 + · · ·+ an + n then
ϕ|L| : X −→ Pa1+···+an+n−1 is embedding. S(a1, . . . , an) := ϕ|L|(X) ⊂ Pa1+···+an+n−1 is rational normal scroll.

(i) X =
⋃

x∈P1

Π−1(x).

(ii) Π−1(x) ∼= Pn−1.
(iii) L |Π−1(x)

∼= OPn−1(1).

Where Π : X −→ P1 is natural projection.

Definition 2.3. Let r + 1 = a1 + · · · + an + n and Λ1
∼= Pa1 , . . . ,Λn ∼= Pan are skew subspaces of Pr.

Ci ⊂ Λi for 1 ≤ i ≤ n are rational normal curve of degree ai defined by the isomorphism ϕi : P1 −→ Λi. Then
the rational normal scroll S(a1, . . . , an) :=

⋃
x∈P1 < ϕ1(x), . . . , ϕn(x) >.
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Definition 2.4. Let x0, . . . , xr be homogeneous coordinate on Pr. Consider the following 2 × r − n + 1
matrix M ,(

x0 · · · xa1−1 | xa1+1 · · · xa1+a2 | · · · | xr−an · · · xr−1

x1 · · · xa1 | xa1+2 · · · xa1+a2+1 | · · · | xr−an+1 · · · xr

)
.

Then the rational normal scroll S(a1, . . . , an) ⊂ Pr is defiend as the rank 1 locus of M .

Theorem 2.5. Above three definitions are equivalent.
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INTRODUCTION TO FLAG DOMAINS

AERYEONG SEO

Department of Mathematics, Kyungpook National University, Korea

Abstract. In this note, we introduce flag domains and some examples.

Let ∆ be the unit disc in the complex plane C,

∆ = {z ∈ C : |z| < 1}

and P1 be the Riemann surface. Then C = P1 − {∞} is embedded in P1 by the stereographic
projection, and ∆ is the open lower hemisphere of P1. Here ∆ ⊂ P1, P1 are the simplest examples
of flag domain and flag manifold respectively.

In the general context flag domains are defined by the following: let GC be a complex
semisimple Lie group. Let P be a parabolic subgroup in GC and G a non-compact real form of
GC. Then an open G-orbit in the flag manifold GC/P is called a flag domain (cf. [3, 4]). In 1960’s
to 1970’s, Wolf studied G-orbits on GC/P using representation theory and Lie algebraic tools
intensively. One of the consequence of his work is the following:

Theorem 0.1 (Wolf, [4]). There are only finitely many G-orbits on X. The maximal dimensional orbits
are open and the minimal-dimensional orbits are closed.

As a result, open G-orbits on X always exists. Without loss of generality, assume that the
G-orbit of eP is open in GC/P . Then we call a flag domain F = G · z0 = G/V with z0 = eP ∈ GC/P

a canonical flag domain if V := G ∩ P is a compact Lie subgroup containing a maximal torus of G.
For the unit disc and the Riemann sphere GC, P , G are given by

GC = SL(2,C) = {±

(
a b

c d

)
: ad− bc = 1}

which is the complex semisimple Lie group of dimension 3,

P = {±

(
a 0

c d

)
: ad = 1},

G = SU(1, 1) = {±

(
a b

±b a

)
: |a|2 − |b|2 = 1},

V = {±

(
a 0

0 a

)
: |a| = 1}.

GC acts on P1 by the linear transformation and G acts on ∆ by the linear fractional transfor-
mations

±

(
a b

c d

)
: z 7→ az + b

cz + d
.
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0.2. Measurable flag domains. A flag domain X0 ⊂ X is called measurable if it carries a
G-invariant volume element. Most of the flag domains which are investigated deeply linked to
complex geometry, algebraic geometry or several complex variables are measurable.

Theorem 0.2 (Wolf, [4]). Let G · z0 ⊂ X be an open orbit in the complex flag manifold X = G/P . Then
the following conditions are equivalent:

(1) The orbit G · z0 is measurable.
(2) G ∩ P is the G-centralizer of a compact torus subgroup of G.
(3) G ·z0 has a G-invariant, possibly indefinite, Kähler metric, thus a G-invariant measure obtained from

the volume form of this metric.

0.3. Generalized type I domains. For any two positive integers p and q, let Hp,q be the
standard non-degenerate Hermitian form of signature (p, q) on Cp+q where p eigenvalues are 1

and q eigenvalues are −1, represented by the matrix

(
Ip 0

0 −Iq

)
under the standard coordinates.

For a positive integer r < p+q, denote by Gr(r,Cp+q) the Grassmannian of r-dimensional complex
linear subspaces (or simply r-planes) of Cp+q. When 1 ≤ r ≤ p, we define the domain Dr

p,q in
Gr(r,Cp+q) to be the set of positive definite r-planes in Cp+q with respect to Hp,q. We call Dr

p,q

a generalized type-I domain. The generalized type-I domain Dr
p,q is an SU(p, q)-orbit on Gr(r,Cp+q)

under the natural action induced by that of SL(p+ q;C) on Gr(r,Cp+q). Recently Dr
p,q have been

studied regarding the proper holomorphic mappings between them and regarding the CR maps
on some CR manifolds in ∂Dr

p,q. We remark that the case r = p corresponds to the classical
bounded symmetric domains of type-I which will be explained in the next section. On the other
extreme, when r = 1 corresponds to the domains Dp,q := D1

p,q, which are called the generalized
balls. It follows immediately from our definition that Dp,q can be also defined as the following
domain on Pp+q−1:

Dp,q =
{

[z1, . . . , zp+q] ∈ Pp+q−1 : |z1|2 + · · ·+ |zp|2 > |zp+1|2 + · · ·+ |zp+q|2
}
.

When p = 1, it is biholomorphic to the unit ball in the Euclidean space Cq. The generalized
ball is one of the simplest kinds of domains on the projective space and their boundaries are
smooth Levi non-degenerate (but not pseudoconvex in general) CR manifolds.

0.4. Bounded symmetric domains. A bounded domain Ω in the complex Euclidean space is
called symmetric if for each p ∈ Ω, there exists a holomorphic automorphism Ip such that

(1) I2
p is the identity map of Ω,

(2) Ip has p as an isolated fixed point.

All bounded symmetric domains are homogeneous domains, i.e. the automorphism group acts
transitively on the domain. In 1920’s, E. Cartan classified all irreducible bounded symmetric
domains which consist of 4 classical types and 2 exceptional types ([2]).

(1) Type I : ΩIm,n = {Z ∈M(m,n,C) : In − ZZ∗ > 0} where m ≥ n = rank(ΩIm,n)

(2) Type II : ΩIIm = {Z ∈M(m,m,C) : Im − ZZ∗ > 0, Zt = −Z}, rank(ΩIIm ) = [ 1
2m]

(3) Type III : ΩIIIm = {Z ∈M(m,m,C) : Im − ZZ∗ > 0, Zt = Z}, rank(ΩIIIm ) = m

(4) Type IV : ΩIV = {z = (z1, . . . , zn) ∈ Cn : ||z||2 < 2, ||z||2 < 1 +
∣∣ 1

2

∑
z2
k

∣∣2}, rank(ΩIV ) = 2,
(5) Type V : ΩV16 = {z ∈MOC

1,2 : 1− (z|z) + (z#|z#) > 0, 2− (z|z) > 0}, and
(6) Type VI : ΩV I27 = {z ∈ H3(OC) : 1 − (z|z) + (z#|z#) − | det z|2 > 0, 3 − 2(z|z) + (z#|z#) >

0, 3− (z|z) > 0}.

Note that Ωm,1 is the m-dimensional unit ball and irreducible bounded symmetric domain of
rank 1 is the unit ball.
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Actually bounded symmetric domains are Harish-Chandra realization into the complex
Euclidean space. Let X be an irreducible Hermitian symmetric space of non-compact type. Let
G be the identity component of the isometry group of X with respect to the Bergman metric of
X and K ⊂ G the isotropy subgroup at o ∈ X. Then X is biholomorphic to G/K. Denote by g and
by k the Lie algebras of G and K respectively. Let g = k + m be the Cartan decomposition. Let
gC = g⊗R C, kC = k⊗R C, mC = m⊗R C, and GC be the complex Lie group corresponding to gC. Let
gc = k +

√
−1m be a Lie algebra of compact type and Gc the corresponding connected Lie group

of gc. Then X̂ = Gc/K is the compact dual of X. Let h be a Cartan subalgebra of g contained
in k. Note that hC = h ⊗R C is a Cartan subalgebra of gC. Let ∆ denote the set of roots of gC

with respect to hC and let gα denote the root space with respect to a root α ∈ ∆. Let ∆k, ∆m

denote the set of compact, non-compact roots of gC with respect to the Cartan decomposition
gC = kC + mC respectively and choose an order of ∆ such that the set of positive non-compact
roots ∆+

m satisfies that m+ :=
∑
α∈∆+

m
gα = T 1,0

o X. Here T 1,0X denotes the holomorphic tangent
bundle of X. Denote m− :=

∑
α∈∆−

m
gα. Let M+ and M− be the corresponding analytic subgroups

in GC. Note that m+ and m− are abelian subalgebras of gC. The center z of k contains an element
Z such that AdZE = ±iE for E ∈ m∓. J := AdZ is a complex structure on m. A basis of m is given
by the elements Xα = Eα+E−α and Yα = −i(Eα−E−α) where α is non-compact positive. For such
α, we have the relations JXα = Yα, JYα = −Xα and [Xα, Yα] = 2iHα. Define Xc

α = iXα and Y cα = iYα.
Those define a basis of im. KC denoting the analytic subgroup corresponding to kC, KC ·M+ is a
semidirect product. X̂ = Gc/K is identified with GC/KC ·M+ by the identity map of G into GC.
For o = eK ∈ X̂, the orbit G · o is the image of the holomorphic embedding gK 7→ g(o) of X into
X̂ (Borel embedding). The map ξ : m− → X̂ defined by

ξ(E) = exp(E)(o)

is a holomorphic homeomorphism onto a dense open subset and ξ is AdK-equivariant. Then
Ω = ξ−1(G(o)) is a bounded symmetric domain in m−; this is the Harish-Chandra realization of
X.
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A JOURNEY FROM DISTRIBUTIVITY TO SET-THEORETIC YANG-BAXTER

HOMOLOGY

SEUNG YEOP YANG

Department of Mathematics Education, Kyungpook National University, Korea

Abstract. Distributive structures have been studied for a long time, and especially the impor-
tance of seif-distributivity has already been emphasized. Yang-Baxter equation, one of the basic
equations in mathematical physics, can be regarded as a generalization of self-distributivity.
We introduce distributive structures related to the set-theoretic Yang-Baxter equation, their
homology theories, and applications to knot theory.

1. Introduction

The Yang-Baxter equation has played an important role in various fields such as quantum
group theory, braided categories, and low-dimensional topology since it was first introduced in-
dependently in a study of theoretical physics by Yang [16] and statistical mechanics by Baxter
[1]. In particular, since the discovery of the Jones polynomial [8] in 1984, it has been extensively
studied in knot theory1. As a homological approach, Carter, Elhamdadi, and Saito [2] defined
a (co)homology theory for set-theoretic Yang-Baxter operators, from which they provided a
method to generate link invariants, and further developments were made by Przytycki [13].
Meanwhile, Joyce [9] and Matveev [10] independently introduced a self-distributive algebraic
structure2, called a quandle, which satisfies axioms motivated by the Reidemeister moves, and it
has been generalized as a biquandle. Quandles and biquandles are solutions of the set-theoretic
Yang-Baxter equation, which have been used to define homotopical and homological invariants
of knots and links [11, 17, 3].

2. Yang-Baxter equation

Let k be a commutative ring with unity and X be a set. We denote by V the free k-module
generated by X. Then, a k-linear map R : V ⊗ V → V ⊗ V is called a pre-Yang-Baxter operator if it
satisfies the equation of the following maps V ⊗ V ⊗ V → V ⊗ V ⊗ V :

(R⊗ IdV ) ◦ (IdV ⊗R) ◦ (R⊗ IdV ) = (IdV ⊗R) ◦ (R⊗ IdV ) ◦ (IdV ⊗R).

We call a pre-Yang-Baxter operator R a Yang-Baxter operator if it is invertible.

The classification of the solutions of the Yang-Baxter equation has been actively studied.
Following the study by Drinfel′d [4], the set-theoretic solutions of the Yang-Baxter equation
have been the focus of various studies [5, 6].

1It is known that a certain solution of the Yang-Baxter equation gives rise to the Jones polynomial [8, 14].
2The importance of (right) self-distributivity stuructures was already emphasized by Peirce [12].
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Definition 2.1. For a given set X, a function R : X×X → X×X satisfying the following equation (called
a set-theoretic Yang-Baxter equation)

(R× IdX) ◦ (IdX ×R) ◦ (R× IdX) = (IdX ×R) ◦ (R× IdX) ◦ (IdX ×R)

is called a set-theoretic pre-Yang-Baxter operator or a set-theoretic solution of the Yang-Baxter equation. In
addition, if R is invertible, then we call R a set-theoretic Yang-Baxter operator.

Special families known as biracks and biquandles are strongly related to the knot theory. Their
precise definitions are as follows:

Definition 2.2. For a given set X, let R be a set-theoretic Yang-Baxter operator denoted by

R(A1, A2) = (R1(A1, A2), R2(A1, A2)) = (A3, A4),

where Ai ∈ X (i = 1, 2, 3, 4), and Rj : X ×X → X (j = 1, 2) are binary operations. We consider the following
conditions:

(1) For any A1, A3 ∈ X, there exists a unique A2 ∈ X such that R1(A1, A2) = A3.
In this case, R1 is left-invertible.

(2) For any A2, A4 ∈ X, there exists a unique A1 ∈ X such that R2(A1, A2) = A4.
In this case, R2 is right-invertible.

(3) For any A1 ∈ X, there is a unique A2 ∈ X such that R(A1, A2) = (A1, A2).

The algebraic structure (X,R1, R2) is called a birack if it satisfies the conditions (1) and (2). A birack is a
biquandle if the condition (3) is also satisfied.

Remark 2.3. The condition (3) in Definition 2.2 implies that for any A2 ∈ X, there is a unique A1 ∈ X
such that R(A1, A2) = (A1, A2). See Remark 3.3 in [2].

Example 2.4. (1) Let Cn be the cyclic rack of order n, i.e., the cyclic group Zn of order n with the
operation i ∗ j = i+ 1 (mod n). Then the function R : X ×X → X ×X defined by

R(i, j) = (R1(i, j), R2(i, j)) = (j ∗ i, i∗j) = (j + 1, i− 1)

forms a set-theoretic Yang-Baxter operator. Moreover, (Cn, R1, R2) is a biquandle, called a cyclic
biquandle.

(2) [2] Let k be a commutative ring with unity 1 and with units s and t such that (1 − s)(1 − t) = 0.
Then the function R : k × k → k × k given by

R(a, b) = (R1(a, b), R2(a, b)) = ((1− s)a+ sb, ta+ (1− t)b)
is a set-theoretic Yang-Baxter operator, and (k,R1, R2) forms a biquandle, called an Alexander bi-
quandle.
For example, let k = Zm with units s and t such that m = |(1−s)(1− t)|, then the function R defined
as above forms a set-theoretic Yang-Baxter operator and Zm;s,t := (Zm, R1, R2) is a biquandle.

3. Normalized homology of a set-theoretic solution of the Yang-Baxter equation

In this section, we study a normalized homology theory for set-theoretic solutions of the
Yang-Baxter equation, defined in a similar way as to obtain the quandle homology [3] from the
rack homology [7]. We consturct concrete examples of non-trivial n-cocycles for the Alexander
biquandles Zm;s,t.

First, we review the homology theory for the set-theoretic Yang-Baxter equation based on [2].
For a set X, let R : X×X → X×X be a set-theoretic Yang-Baxter operator on X. For each integer
n > 0, we define the n-chain group CY Bn (X) to be the free abelian group generated by the elements

of Xn and the n-boundary homomorphism ∂Y Bn : CY Bn (X)→ CY Bn−1(X) by
n∑
i=1

(−1)i+1(dli,n−dri,n), where

the two face maps dli,n, d
r
i,n : CY Bn (X)→ CY Bn−1(X) are given by

dli,n = (R2 × Id
×(n−2)
X ) ◦ (IdX ×R× Id

×(n−3)
X ) ◦ · · · ◦ (Id

×(i−2)
X ×R× Id

×(n−i)
X ),

dri,n = (Id
×(n−2)
X ×R1) ◦ (Id

×(n−3)
X ×R× IdX) ◦ · · · ◦ (Id

×(i−1)
X ×R× Id

×(n−i−1)
X ).

Then CY B∗ (X) := (CY Bn (X), ∂Y Bn ) forms a chain complex, and the yielded homology HY B
∗ (X) is

called the set-theoretic Yang-Baxter homology of X.
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Consider the subgroup CDn (X) of CY Bn (X) defined by

CDn (X) = span{(x1, . . . , xn) ∈ CY Bn (X) | R(xi, xi+1) = (xi, xi+1) for some i = 1, . . . , n− 1},

if n ≥ 2, otherwise we let CDn (X) = 0.

Proposition 3.1. (CDn (X), ∂Y Bn ) is a sub-chain complex of (CY Bn (X), ∂Y Bn ).

The homology HD
n (X) = Hn(CD∗ (X)) is called the degenerate set-theoretic Yang-Baxter homol-

ogy groups of X. Consider the quotient chain complex CNYB∗ (X) := (CNYBn (X), ∂NYBn ), where
CNYBn (X) = CY Bn (X)

/
CDn (X), and ∂NYBn is the induced homomorphism. For an abelian group

A, define the chain and cochain complexes CNYB∗ (X;A) := (CNYBn (X;A), ∂NYBn ) and C∗NYB(X;A) :=

(CnNY B(X;A), δnNY B), where

CNYBn (X;A) = CNYBn (X)⊗A, ∂NYBn = ∂NYBn ⊗ IdA,

CnNY B(X;A) = Hom(CNYBn (X), A), δnNY B = Hom(∂NYBn , IdA).

Definition 3.2. Let R be a set-theoretic Yang-Baxter operator on X. For a given abelian group A, the
homology group and cohomology group

HNYB
n (X;A) = Hn(CNYB∗ (X;A)) = ZNYBn (X;A)

/
BNYBn (X;A),

Hn
NY B(X;A) = Hn(C∗NYB(X;A)) = ZnNY B(X;A)

/
BnNY B(X;A)

are called the nth normalized set-theoretic Yang-Baxter homology group of X with coefficient group A and the
nth normalized set-theoretic Yang-Baxter cohomology group of X with coefficient group A.

Lemma 3.3. For an Alexander biquandle X, the face maps dli,n, d
r
i,n : CY Bn (X) → CY Bn−1(X) have the

formulas:
dli,n(x1, . . . , xn) = (tx1 + (1− t)xi, . . . , txi−1 + (1− t)xi, xi+1, . . . , xn),

dri,n(x1, . . . , xn) = (x1, . . . , xi−1, (1− s)xi + sxi+1, . . . , (1− s)xi + sxn).

Theorem 3.4. Let X = Zm;s,t be an Alexander biquandle. For n ≥ 2, the map θn ∈ CnNY B(X;Zm) defined
by

θn(x1, . . . , xn) =

n−1∏
i=1

(xi − xi+1)

and extending linearly to all elements of CNYBn (X) is an n-cocycle.

4. Classifying space of a biquandle

For a given set X, let R = (R1, R2) : X ×X → X ×X be a set-theoretic Yang-Baxter operator.
We define the face maps dri , d

l
i : Xn → Xn−1 by

dri = (Id
×(n−2)
X ×R1) ◦ (Id

×(n−3)
X ×R× IdX) ◦ · · · ◦ (Id

×(i−1)
X ×R× Id

×(n−i−1)
X ),

dli = (R2 × Id
×(n−2)
X ) ◦ (IdX ×R× Id

×(n−3)
X ) ◦ · · · ◦ (Id

×(i−2)
X ×R× Id

×(n−i)
X ).

Then X = (Xn, dri , d
l
i) forms a pre-cubical set, where X0 is a singleton set {∗}. In this case the

homology of its geometric realization |X | is the homology for the set-theoretic Yang-Baxter
equation in [2].

When (X,R1, R2) is a birack, its geometric realization is called a birack space. If (X,R1.R2) is a
biquandle, the birack space can be transformed into a more interesting space, called a biquandle

space, which can be used for constructing link invariants, in analogy to the way quandle spaces
in [11] where obtained from rack spaces [7].

We inductively define the n-skeleton (n ≥ 3) of a biquandle space.
Let (X,R1, R2) be a biquandle, and let |X |n be the n-skeleton of |X |. For each x ∈ X, we denote
the unique element y ∈ X such that R(x, y) = (x, y) by x, i.e., R(x, x) = (x, x). Consider the subset
Dm = {(x1, . . . , xm) ∈ Xm | xi+1 = xi for some 1 ≤ i ≤ m− 1} of Xm.
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Note that the rectangle labeled by x ∈ D2 forms the wedge sum of one 2-sphere S2 and some
circles (more precisely, it is either S2 ∨ S1 or S2 ∨ S1 ∨ S1 in |X |n. For each x ∈ D2, we attach a
3-cell B3 to the 2-sphere S2 via a homeomorphism ∂(B3) → S2. Denote the resulting space by
BX3.

Let x ∈ D3, and let D2
x = {dεi (x) | 1 ≤ i ≤ 3, ε ∈ {l, r}} ∩ D2. The cube labeled by x ∈ D3

together with the 3-cells attached to each y ∈ D2
x in the previous step forms the wedge sum of

one 3-sphere S3 and some 2-spheres and circles in BX3. For each x ∈ D3, we attach a 4-cell B4

to the 3-sphere S3 via a homeomorphism ∂(B4) → S3. The resulting space, denoted by BX4, is
the 4-skeleton of the biquandle space of X.

Suppose that BXn−1 is the cell complex obtained in the previous step. For each x ∈ Dn−1,

we can build the wedge sum of one (n− 1)-sphere Sn−1 and some p-spheres (p < n− 1) in BXn−1

similar to the above by inductively attaching k-dimensional cells for 3 ≤ k ≤ n− 1 with respect
to the elements of Dk−1

x = {dεn−k

in−k
◦ · · · ◦ dε1i1 (x) | 1 ≤ ij ≤ n− j, εj ∈ {l, r}, 1 ≤ j ≤ n− k}∩Dk−1. Again,

we attach a n-cell Bn to the (n− 1)-sphere Sn−1 via a homeomorphism ∂(Bn)→ Sn−1 in order to
construct the n-skeleton BXn of the biquandle space BX. By construction, the homology of the
biquandle space BX coincides with the normalized set-theoretic Yang-Baxter homology of the
biquandle X.

The 4-skeleton BX4 of the biquandle space is especially important for classical and surface-
knot-theoretic applications.
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VARIATION OF KÄHLER-EINSTEIN METRICS ON BOUNDED STRONGLY

PSEUDOCONVEX DOMAINS IN KÄHLER MANIFOLDS
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Abstract. In this survey, we introduce the variation of the Kähler-Einstein metrics on a
family of bounded pseudoconvex domains in Kähler manifolds and its positivity.

1. Introduction

On a family of canonically polarized compact Kähler manifolds, the variation of the Kähler-
Einstein metrics is represented by a curvature form of the relative canonical line bundle. In [5],
Schumacher has proved that the variation of Kähler-Einstein metrics on a family of canonically
polarized compact Kähler manifolds is semi-postive. He has also proved that it is strictly posi-
tive if the family is effectively parametrized. This celebrated theorem implies many important
applications on the moduli space of canonically polarized compact Kähler manifolds, especially
the extension of curvature forms and line bundles. Moreover, it also gives a nice curvature
formula of the Weil-Petersson metric on the moduli space ([5]).

In this survey article, we will explain the brief idea of the Schumacher’s theorem and how
to apply his method to a family of bounded strongly pseudoconvex domains in Kähler manifolds.

2. Preliminaries

Let p : Xn+d → Y d be a smooth family of Kähler manifolds, i.e., p is a surjective holomorphic
submersion. Taking a local coordinate (s1, . . . , sd) of Y and a local coordinate (z1, . . . , zn) of a
fiber of p, (z1, . . . , zn, s1, . . . , sd) forms a local coordinate of X such that under this coordinate, the
holomorphic mapping p is given by

p(z1, . . . , zn, s1, . . . , sd) = (s1, . . . , sd).

We call this an admissible coordinate of p.

2.1. Horizontal lifts and geodesic curvatures. For a complex manifold M , we denote by T ′M

the complex tangent bundle of type (1, 0).

Definition 2.1. Let V ∈ T ′Y and τ be a real (1, 1)-form on X. Suppose that τ is positive-definite on each
fiber Xy.

1. A vector field Vτ of type (1, 0) is called a horizontal lift of V if Vτ satisfies the following:
(i) 〈Vτ ,W 〉τ = 0 for all W ∈ T ′Xy,
(ii) dp(Vτ ) = V .

2. The geodesic curvature c(τ)(V ) of τ along V is defined by the norm of Vτ with respect to the sesquilin-
ear form 〈·, ·〉τ induced by τ , namely,

c(τ)(V ) = 〈Vτ , Vτ 〉τ .
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Suppose that Y is 1-dimensional. Then it is well known that

τn+1 = c(τ) · τn ∧
√
−1ds ∧ ds. (6.3)

It follows that if c(τ) > 0 (resp. ≥ 0), then τ is a positive (resp. semi-positive) real (1, 1)-form as τ
is positive-definite when restricted to Xs.

2.2. Families of canonically polarized compact Kähler manifolds. Let p : Xn+d → Y d be a
smooth family of canonically polarized compact Kähler manifolds, i.e., p is a surjective holo-
morphic submersion such that on each fiber Xy := p−1(y), the canonical line bundle KXy

of Xy

is positive. Then Yau’s theorem implies that there exists a Kähler-Einstein metric ωKEy with
Ricci curvature −1 on each fiber Xy ([1, 7]). The variation of the Kähler-Einstein metric ρ of
the family of canonically polarized compact Kähler manifolds is defined by

ρ = i∂∂ log((ωKEy )
n ∧ p∗(dVs)),

Then the Kähler-Einstein condition immediately implies that

ρ|Xy = ωKEy .

Schumacher proves that the geodesic curvature of ρ satisfies an elliptic partial differential
equation.

Theorem 2.2 (Schumacher [5]). The geodesic curvature c(ρ) satisfies that

−∆c(ρ) + c(ρ) =
∣∣∂vρ∣∣2 (6.4)

on each fiber Xy, where vρ is the horizontal lift of v := ∂/∂s with respect to ρ.

Applying the maximum principle to (6.6), one can easily see that c(ρ) is nonnegative. This
implies that ρ is semi-positive on X. Moreover, if ∂vρ is not identically vanishes, then c(ρ) is
positive by the property of the solution of (6.6) or the heat kernel estimate. (For the detail,
see [5].) It is remarkable that ∂vρ is the harmonic representative of the Kodaira-Spencer class
of p : X → Y . Therefore, if the family is not locally trivial then ρ is positive-definite on X.
Therefore, we have the following theorem.

Theorem 2.3 (Schumacher [5]). Let p : X → Y be a family of canonically polarized compact Kähler
manifolds. Then the variation of the Kähler-Einstein metrics ρ is positive semi-definite. Moreover, ρ is strictly
positive-definite if the family is not locally trivial.

3. Families of bounded pseudoconvex domains

In this section, we will apply Schumacher’s method to families of strongly pseudoconvex
domains. Before going to the families of strongly pseudoconvex domains, we recall the complete
Kähler-Einstein metric on a strongly pseudoconvex domain.

3.1. Kähler-Einstein metric on a strongly pseudoconvex domain. Let Ω be a smooth bounded
strongly pseudoconvex domain in a Kähler manifold (M,ω) such that Ric(ω) < 0. This gives us a
new Kähler form ω0 on M , defined by

ω0 := − 1

n+ 1
Ric(ω)

where n is the complex dimension of M . Let r be a defining function of Ω which is strictly
plurisubharmonic on a neighborhood of ∂Ω. Then − log(−r) is strictly plurisubharmonic near
∂Ω. It is easy to see that

ω0
r := ω0 − i∂∂ log(−r)

is a complete Kähler metric on Ω. Moreover, (Ω, ω0
r) has bounded geometry of infinite order (see

Proposition 1.3 in [2]). The following theorem due to Cheng and Yau gives a solution of the
complex Monge-Ampère equation.
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Theorem 3.1 (Cheng, Yau [2]). If F ∈ C∞(Ω), then there exists a solution φ of the equation:

(ω0
r + i∂∂φ)n = e(n+1)φ+F (ω0

r)n, (6.5)

which is called a complex Monge-Ampère equation.

Applying Theorem 3.1 with F := log
[
(−r)−(n+1) (ω)n

(ω0
r)n

]
∈ C∞(Ω), the complex Monge-Ampère

equation implies that
Ric(ω0

r + i∂∂φ) = −(n+ 1)(ω0
r + i∂∂φ).

The uniqueness of the Kähler-Einstein metric ωKE on Ω says that

ωKE = ω0
r + i∂∂φ.

3.2. Families of strongly pseudoconvex domains. Let p : X → Y be a surjective holomorphic
submersion, where X and Y are complex manifolds and let D be a bounded smooth domain in
X such that every fiber Dy := D ∩ p−1(y) with y ∈ Y is a bounded strongly pseudoconvex domain
in Xy := p−1(y). We call p : X → Y with D a holomorphic family of bounded strongly pseudoconvex domains

in X.
If there exists a Kähler form ω on X and satisfies that the Ricci curvature Ric(ωy) of ωy := ω|Xy

is negatively curved for every y ∈ Y , then Theorem 3.1 implies that there exists a unique
complete Kähler metric ωKEy on Dy satisfying

Ric(ωKEy ) = −(n+ 1)ωKEy ,

where n is the dimension of Dy (cf. [2]). As before, we define the variation of Kähler-Einstein
metrics by

ρ :=
1

n+ 1
ΘhD/Y

=
1

n+ 1
i∂∂ log((ωKEy )

n ∧ p∗(dVs)),

The Kähler-Einstein condition implies that

ρ|Dy
=

1

n+ 1
ΘhD/Y

|Dy
= ωKEy ,

for all y ∈ Y . Since the proof of Theorem 2.2 is local, we have the same PDE for c(ρ).

Proposition 3.2. The geodesic curvature c(ρ) satisfies that

−∆c(ρ) + (n+ 1)c(ρ) =
∣∣∂vρ∣∣2 (6.6)

on each fiber Dy, where vρ is the horizontal lift of v := ∂/∂s with respect to ρ.

Unlike the previous case, now our fiber Xy is not compact. This means that we cannot
apply the maximum principle directly. However, if the geodesic curvature c(ρ) is bounded from
below, then the Omori-Yau almost maximum principle ([6]) implies that there exists a sequence
{xk} ⊂ Dy such that

(i) inf
x∈Dy

c(ρ)(x) = lim
k→∞

c(ρ)(xk),

(ii) lim
k→∞

∇c(ρ)(xk) = 0, and lim inf
k→∞

∆c(ρ)(xk) ≥ 0.

It follows from Proposition (6.6) that

(n+ 1)c(ρ)(xk) =
∣∣∂vρ∣∣2 + ∆c(ρ)(xk) ≥ 0.

Taking k → ∞, we have c(ρ) ≥ 0. Since the Kähler-Einstein metric is real-analytic, c(ρ) and vρ

are also real-analytic. Therefore, we can apply the following proposition.

Proposition 3.3 (cf. [5, 3]). Let u and f be real-analytic, non-negative, real function on a neighborhood
U ⊂ Cn of 0. Let ωU be a real-analytic Kähler form on U and C be a positive constant. Suppose

−∆ωU
u+ Cu = f

holds. If u(0) = 0, then both u and f are vanish identically in a neighborhood of 0.
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The above proposition with u := c(ρ) implies that c(ρ) ≡ 0 or c(ρ) > 0. Now the positivity of
ρ follows from the following:

Proposition 3.4. For each fiber Dy,

c(ρ)(x)→∞ as x→ ∂Dy, (6.7)

provided D is a strongly pseudoconvex domain in X.

This proposition comes from the boundary behavior of the variation of the solutions of
complex Monge-Ampère equations. (For the detail, see [4].) Therefore we have the following
theorem.

Theorem 3.5 (Choi-Yoo [4]). Let p : X → S with D ⊂ X be a holomorphic family of strongly pseudoconvex
domains in X. Suppose that there exists a Kähler matric ω such that

Ric(ωy) < 0

on every fiber Xy. If the total space D is strongly pseudoconvex, then ρ is positive-definite on D′.
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MINIMAL SURFACES AND SOLITONS FOR THE MEAN CURVATURE FLOW
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Department of Mathematics, Pusan National University, Korea

Abstract. Minimal surfaces are solutions to a variational problem for the area functional.
Minimal surfaces theory is related to several mathematical disciplines. We introduce interesting
examples and some properties of them. And self-similar solutions and translating solitons are not
only special solutions of mean curvature flow (MCF) but a key role in the study of singularities
of MCF. They have received a lot of attention. We introduce some examples of self-similar
solutions and translating solitons for the MCF and give rigidity results of some of them.

1. Minimal surfaces

In mathematics, a minimal surface is a surface that locally minimizes its area. This is equiv-
alent to having zero mean curvature. The term minimal surface is used because these surfaces
originally arose as surfaces that minimized total surface area subject to some constraint. Phys-
ical models of area-minimizing minimal surfaces can be made by dipping a wire frame into
a soap solution, forming a soap film, which is a minimal surface whose boundary is the wire
frame. However, the term is used for more general surfaces that may self-intersect or do not
have constraints. For a given constraint there may also exist several minimal surfaces with
different areas (for example, see minimal surface of revolution): the standard definitions only
relate to a local optimum, not a global optimum.

Minimal surfaces can be defined in several equivalent ways in R3. The fact that they are
equivalent serves to demonstrate how minimal surface theory lies at the crossroads of sev-
eral mathematical disciplines, especially differential geometry, calculus of variations, potential
theory, complex analysis and mathematical physics.

Local least area definition: A surface M ⊂ R3 is minimal if and only if every point p ∈M has
a neighborhood, bounded by a simple closed curve, which has the least area among all surfaces
having the same boundary. This property is local: there might exist regions in a minimal
surface, together with other surfaces of smaller area which have the same boundary. This
property establishes a connection with soap films; a soap film deformed to have a wire frame
as boundary will minimize area.

Variational definition: A surface M ⊂ R3 is minimal if and only if it is a critical point of the
area functional for all compactly supported variations. This definition makes minimal surfaces
a 2-dimensional analogue to geodesics, which are analogously defined as critical points of the
length functional.

Minimal surface curvature planes. On a minimal surface, the curvature along the principal
curvature planes are equal and opposite at every point. This makes the mean curvature zero.
Mean curvature definition: A surface M ⊂ R3 is minimal if and only if its mean curvature is equal
to zero at all points. A direct implication of this definition is that every point on the surface is
a saddle point with equal and opposite principal curvatures. Additionally, this makes minimal
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surfaces into the static solutions of mean curvature flow. By the Young–Laplace equation, the
mean curvature of a soap film is proportional to the difference in pressure between the sides. If
the soap film does not enclose a region, then this will make its mean curvature zero. By contrast,
a spherical soap bubble encloses a region which has a different pressure from the exterior region,
and as such does not have zero mean curvature.

Differential equation definition: A surface M ⊂ R3 is minimal if and only if it can be locally

expressed as the graph of a solution of div
(

∇f√
1+|∇f |2

)
. The partial differential equation in this

definition was originally found in 1762 by Lagrange, and Jean Baptiste Meusnier discovered in
1776 that it implied a vanishing mean curvature.

2. solitons for the mean curvature flow

A smooth family of immersions F : Σ × [0, T ) → Rn+1 is a solution of the mean curvature flow

(MCF) if F satisfies the following parabolic equation:

∂

∂t
F (p, t) =

−→
H (p, t), (6.8)

for all (p, t) ∈ Σ× [0, T ), where
−→
H is the mean curvature vector. The MCF is the negative gradient

flow of the area functional. It is well-known that any closed hypersurface occurs singularities in
finite time under the MCF. Thus, it is important to study singularities of the MCF. Huisken [4]

and Huisken and Sinestrari [5] showed that there are two types of singularities: type-I and type-
II that are represented by self-shrinkers and translating solitons, respectively. An n-dimensional
submanifold in Rn+m is called a self-shrinker if it satisfies

~H = −x⊥,

where ~H and x⊥ denote the mean curvature vector and the normal part of the position vector
x to the submanifold. A translating soliton for the MCF is a submanifold in Rn+m satisfying the
following equation:

~H = v⊥,

where v⊥ denotes the normal part of a unit constant vector v to the submanifold. A translating
soliton is not only a blow-up limit flow of type-II singularity, but also a special solution that
moves only in a constant direction v without deforming its shape under the MCF, namely, the
solution is as follows:

F (p, t) = F (p) + vt,

where F (p) = F (0, p).

3. examples of translating solitons

Example 3.1 (Product of minimal submanifold). The simplest translating soliton is a plane parallel to v
in R3 as a product of a line and R parallel to the direction v. From this perspective, the translating solitons
in Rn+1 can be constructed as the product of an (n − 1)-dimensional minimal submanifold M and R parallel
to the direction v, i.e., M × R. There are numerous of translating solitons arising from minimal submanifolds.
In [8], Nadirashvili constructed a complete, non-proper, minimal disk in the unit ball. Specifically, a complete
non-proper translating soliton can be obtained from Nadirashvili’s minimal surface.

Example 3.2 (Grim reaper cylinders). The grim reaper y = − log cos(x) is a translating soliton on R2,
i.e., the only eternal solution of the MCF in R2, which is also known as the curve-shortening flow. Its product
surface, which is a cylindrical surface of the grim reaper, is called a canonical grim reaper cylinder whose
suitable combination of rotation and dilation is called a grim reaper cylinder. The following parametrization is
for a family of grim reaper cylinders:

Xθ(u, v) =

(
s, t,− 1

cos2(θ)
log cos(s cos(θ)) + t tan(θ)

)
.
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In particular, the grim reaper cylinder is a one-parameter family of cylindrical surfaces from the canonical grim
reaper cylinder to the plane parallel to v = e3.

Example 3.3 (translating bowl and winglike translator). Altschuler and Wu [1] and Clutterbuck, Schnürer
and Schulze [2] showed the existence of the translating bowl and the winglike translator. These are rotationally
symmetric translating solitons and can thus be represented as an immersion X : I×Sn−1 → Rn+1 parametrized
by

X(s, φ1, · · · , φn−1) = (x(s)Φ(φ1, · · · , φn−1), y(s)),

where Φ is an orthogonal parametrization of the (n − 1)-dimensional unit sphere. The profile curve γ(s) =
(x(s), y(s)) parametrized by arc-length satisfies the following differential equation:

x′(1− n) + nyy′ + y(x′y′′ − x′′y′) = 0.

In particular, the translating bowl and winglike translator have an asymptotic behavior of y = x2. The Kim
and the author [6] rediscovered their asymptotic behaviors of the profile curve using the phase-plane method
to the above differential equation.

Example 3.4 (Generalized winglike translator). As a generalization of the winglike translator, Kunikawa
[7] constructed an m-dimensional translating soliton in Rn. Let N be any minimal submanifold in Sn−2 ⊂ Rn−1

and r : [0,∞]→ R be a function satisfying

r′′ = (1 + r′2)

(
1− (m− 1)r′

t

)
,

which is an m-dimensional winglike translator equation. The immersion F : M → Rn defined by F (t, p) =
(tp, r(t)) where p ∈ N and t ∈ [0,∞] is an m-dimensional translating soliton with the velocity en ∈ Rn.

Example 3.5 (Helicoidal translating solitons). Halldorsson [3] proved the existence of the helicoidal rotating
solitons under the MCF, which are also known as the helicoidal translating solitons. The authors [6] completely
classified the profile curves and analyzed their asymptotic behaviors in the same way as those of the translating
bowl or winglike translator. Consider a helicoidal translating soliton Σ with the pitch h whose helicoidal axis is
the z-axis. We can parametrize Σ as X : Σ→ R3 by

X(s, t) = (x(s) cos(t), x(s) sin(t), y(s) + ht),

such that the profile curve (x, y) parametrized by arc-length satisfies the following differential equation:

(x2 + 2h2x′2)y′ + x(h2 + x2)(x′y′′ − y′x′′)− 2xx′(x2 + h2x′2) = 0.
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